login
Decimal expansion of root of 1 - Sum_{n>=0} 1/x^(2^n).
1

%I #8 Jul 15 2021 13:19:05

%S 1,7,6,6,3,9,8,1,1,4,5,5,0,1,7,3,5,9,7,2,2,8,4,8,8,3,9,2,4,4,0,0,9,9,

%T 7,3,0,2,3,2,0,6,9,2,8,7,9,5,7,0,7,2,7,7,5,2,7,8,2,8,5,0,7,4,4,0,8,3,

%U 8,4,3,4,0,5,2,4,9,8,8,3,1,1,7,9,0,4,0,6,9,7,2,7,2,0,4,5,7,9,5,8,2,4,7,9,9

%N Decimal expansion of root of 1 - Sum_{n>=0} 1/x^(2^n).

%e 1.766398114550173597228488392440099730232069287957072775...

%t RealDigits[ FindRoot[1 - Sum[1/(x^(2^n)), {n, 0, 8}] == 0, {x, 1.7}, WorkingPrecision -> 128][[1, 2]], 10, 128][[1]] (* _Robert G. Wilson v_, Aug 08 2005 *)

%o (PARI) solve(x=1,2,1-sum(k=0,8,1./x^(2^k)))

%Y This is the limit ratio between consecutive terms of A023359.

%K cons,nonn

%O 1,2

%A _Franklin T. Adams-Watters_, Aug 07 2005