

A109696


Decimal expansion of root of 1  Sum_{n>=} 1/x^(2^n).


0



1, 7, 6, 6, 3, 9, 8, 1, 1, 4, 5, 5, 0, 1, 7, 3, 5, 9, 7, 2, 2, 8, 4, 8, 8, 3, 9, 2, 4, 4, 0, 0, 9, 9, 7, 3, 0, 2, 3, 2, 0, 6, 9, 2, 8, 7, 9, 5, 7, 0, 7, 2, 7, 7, 5, 2, 7, 8, 2, 8, 5, 0, 7, 4, 4, 0, 8, 3, 8, 4, 3, 4, 0, 5, 2, 4, 9, 8, 8, 3, 1, 1, 7, 9, 0, 4, 0, 6, 9, 7, 2, 7, 2, 0, 4, 5, 7, 9, 5, 8, 2, 4, 7, 9, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

1.766398114550173597228488392440099730232069287957072775...


MATHEMATICA

RealDigits[ FindRoot[1  Sum[1/(x^(2^n)), {n, 0, 8}] == 0, {x, 1.7}, WorkingPrecision > 128][[1, 2]], 10, 128][[1]] (* Robert G. Wilson v, Aug 08 2005 *)


PROG

(PARI) solve(x=1, 2, 1sum(k=0, 8, 1./x^(2^k)))


CROSSREFS

This is the limit ratio between consecutive terms of A023359.
Sequence in context: A102769 A031348 A247674 * A257233 A110948 A199871
Adjacent sequences: A109693 A109694 A109695 * A109697 A109698 A109699


KEYWORD

cons,nonn


AUTHOR

Franklin T. AdamsWatters, Aug 07 2005


STATUS

approved



