|
|
A109663
|
|
Numbers n such that the sum of the digits of (n^n + n!) is divisible by n.
|
|
0
|
|
|
1, 2, 3, 9, 15, 18, 27, 36, 51, 81, 93, 169, 181, 348, 444, 504, 528, 1881, 2031, 9843, 16479, 16685, 45435, 129056, 138510, 214008, 358326
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The quotients are: 2, 3, 2, 6, 6, 5, 8, 7, 6, 9, 9, 10, 10, 12, 12, 12, 12, 15, 15, 18, 19, 19, 21, 23, 22, 24, 25.
No more terms < 500000. [Lars Blomberg, Jul 05 2011]
|
|
LINKS
|
Table of n, a(n) for n=1..27.
|
|
EXAMPLE
|
The digits of 1881^1881 + 1881! sum to 28215 and 28215 is divisible by 1881, so 1881 is in the sequence.
|
|
MATHEMATICA
|
Do[s = n^n + n!; k = Plus @@ IntegerDigits[s]; If[Mod[k, n] == 0, Print[n]], {n, 1, 10000}]
Select[Range[360000], Divisible[Total[IntegerDigits[#^#+#!]], #]&] (* Harvey P. Dale, Dec 27 2018 *)
|
|
CROSSREFS
|
Sequence in context: A245594 A078610 A108825 * A056702 A294126 A091361
Adjacent sequences: A109660 A109661 A109662 * A109664 A109665 A109666
|
|
KEYWORD
|
base,more,nonn
|
|
AUTHOR
|
Ryan Propper, Aug 06 2005
|
|
EXTENSIONS
|
a(21)-a(27) from Lars Blomberg, Jul 05 2011
|
|
STATUS
|
approved
|
|
|
|