

A109656


Numbers n such that the sum of the digits of sum_{k=1..n}(k^k) is divisible by n.


0



1, 13, 15, 22, 25, 107, 115, 149, 163, 472, 808, 1347, 1979, 27594, 77150
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..15.


EXAMPLE

sum_{k=1..13}(k^k) = 312086923782437; the digits of 312086923782437 sum to 65, which is divisible by 13, so 13 is in the sequence.


MATHEMATICA

s = 0; Do[s += n^n; k = Plus @@ IntegerDigits[s]; If[Mod[k, n] == 0, Print[n]], {n, 1, 10^5}]


CROSSREFS

Sequence in context: A257492 A067912 A140646 * A178724 A087814 A227449
Adjacent sequences: A109653 A109654 A109655 * A109657 A109658 A109659


KEYWORD

nonn,base


AUTHOR

Ryan Propper, Aug 06 2005


EXTENSIONS

More terms from Ryan Propper, Nov 13 2005


STATUS

approved



