login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109629 Sequence of Mahler coefficients of the Gray code function. 1
0, 1, 1, -4, 12, -28, 52, -80, 112, -176, 376, -976, 2536, -6112, 13504, -27456, 51552, -89344, 142240, -206656, 274800, -354240, 546976, -1283648, 3918800, -12104064, 34744256, -92031104, 227231104, -528840704, 1170706304, -2481880320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

F. Clarke, The Gray code function, in: $p$-adic methods and their applications, A.J. Baker and R. J. Plymen editors, Oxford University Press, New York 1992, 1-7.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = Sum_{k=0..n} (-1)^{n-k} * C(n,k) * g(k), where g is the Gray code function A003188.

MAPLE

g:= proc(n) option remember; `if`(n<2, n,

      (b-> b+g(2*b-1-n))(2^ilog2(n)))

    end:

a:= n-> add((-1)^(n-k)*binomial(n, k)*g(k), k=0..n):

seq(a(n), n=0..40);  # Alois P. Heinz, Oct 09 2008

CROSSREFS

Sequence in context: A178571 A278211 A192736 * A112087 A166019 A184633

Adjacent sequences:  A109626 A109627 A109628 * A109630 A109631 A109632

KEYWORD

sign

AUTHOR

Jan-Christoph Schlage-Puchta (jcp(AT)math.uni-freiburg.de), Aug 02 2005

EXTENSIONS

More terms from Alois P. Heinz, Oct 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 14:52 EST 2016. Contains 278877 sequences.