login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109629 Sequence of Mahler coefficients of the Gray code function. 1
0, 1, 1, -4, 12, -28, 52, -80, 112, -176, 376, -976, 2536, -6112, 13504, -27456, 51552, -89344, 142240, -206656, 274800, -354240, 546976, -1283648, 3918800, -12104064, 34744256, -92031104, 227231104, -528840704, 1170706304, -2481880320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

F. Clarke, The Gray code function, in: $p$-adic methods and their applications, A.J. Baker and R. J. Plymen editors, Oxford University Press, New York 1992, 1-7.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = Sum_{k=0..n} (-1)^{n-k} * C(n,k) * g(k), where g is the Gray code function A003188.

MAPLE

g:= proc(n) option remember; `if`(n<2, n,

      (b-> b+g(2*b-1-n))(2^ilog2(n)))

    end:

a:= n-> add((-1)^(n-k)*binomial(n, k)*g(k), k=0..n):

seq(a(n), n=0..40);  # Alois P. Heinz, Oct 09 2008

CROSSREFS

Sequence in context: A220514 A178571 A192736 * A112087 A166019 A184633

Adjacent sequences:  A109626 A109627 A109628 * A109630 A109631 A109632

KEYWORD

sign

AUTHOR

Jan-Christoph Schlage-Puchta (jcp(AT)math.uni-freiburg.de), Aug 02 2005

EXTENSIONS

More terms from Alois P. Heinz, Oct 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 11:27 EST 2014. Contains 252210 sequences.