This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109629 Sequence of Mahler coefficients of the Gray code function. 1
 0, 1, 1, -4, 12, -28, 52, -80, 112, -176, 376, -976, 2536, -6112, 13504, -27456, 51552, -89344, 142240, -206656, 274800, -354240, 546976, -1283648, 3918800, -12104064, 34744256, -92031104, 227231104, -528840704, 1170706304, -2481880320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES F. Clarke, The Gray code function, in: \$p\$-adic methods and their applications, A.J. Baker and R. J. Plymen editors, Oxford University Press, New York 1992, 1-7. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{k=0..n} (-1)^{n-k} * C(n,k) * g(k), where g is the Gray code function A003188. MAPLE g:= proc(n) option remember; `if`(n<2, n,       (b-> b+g(2*b-1-n))(2^ilog2(n)))     end: a:= n-> add((-1)^(n-k)*binomial(n, k)*g(k), k=0..n): seq(a(n), n=0..40);  # Alois P. Heinz, Oct 09 2008 CROSSREFS Sequence in context: A178571 A278211 A192736 * A112087 A166019 A184633 Adjacent sequences:  A109626 A109627 A109628 * A109630 A109631 A109632 KEYWORD sign AUTHOR Jan-Christoph Schlage-Puchta (jcp(AT)math.uni-freiburg.de), Aug 02 2005 EXTENSIONS More terms from Alois P. Heinz, Oct 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 16:40 EST 2019. Contains 319271 sequences. (Running on oeis4.)