login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109629 Sequence of Mahler coefficients of the Gray code function. 1
0, 1, 1, -4, 12, -28, 52, -80, 112, -176, 376, -976, 2536, -6112, 13504, -27456, 51552, -89344, 142240, -206656, 274800, -354240, 546976, -1283648, 3918800, -12104064, 34744256, -92031104, 227231104, -528840704, 1170706304, -2481880320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

F. Clarke, The Gray code function, in: $p$-adic methods and their applications, A.J. Baker and R. J. Plymen editors, Oxford University Press, New York 1992, 1-7.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = Sum_{k=0..n} (-1)^{n-k} * C(n,k) * g(k), where g is the Gray code function A003188.

MAPLE

g:= proc(n) option remember; local b; if n<=1 then n else b:= 2^ilog2(n); b+ g(2*b-1-n) fi end: a:= n-> add ((-1)^(n-k) *binomial (n, k) *g(k), k=0..n): seq (a(n), n=0..40);  # Alois P. Heinz, Oct 09 2008

CROSSREFS

Sequence in context: A220514 A178571 A192736 * A112087 A166019 A184633

Adjacent sequences:  A109626 A109627 A109628 * A109630 A109631 A109632

KEYWORD

sign

AUTHOR

Jan-Christoph Schlage-Puchta (jcp(AT)math.uni-freiburg.de), Aug 02 2005

EXTENSIONS

More terms from Alois P. Heinz, Oct 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 23 10:56 EDT 2014. Contains 240917 sequences.