login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

E.g.f.: 5x/(-1+1/(-1+1/(-1+1/(-1+log(1+5x))))) = -5x[3-2log(1+5x)]/[5-3log(1+5x)].
0

%I #2 Mar 30 2012 17:34:20

%S 0,-3,2,3,56,-360,12420,-303030,10226880,-381416040,16356484800,

%T -781899663600,41374146038400,-2397894225620400,151087293619567200,

%U -10281399143079546000,751437976013183232000,-58702720576973120928000,4881171236699697126048000

%N E.g.f.: 5x/(-1+1/(-1+1/(-1+1/(-1+log(1+5x))))) = -5x[3-2log(1+5x)]/[5-3log(1+5x)].

%D C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc. 127 (1997), no. 608, x+97 pp.

%p G:=5*x/(-1+1/(-1+1/(-1+1/(-1+log(1+5*x))))): Gser:=series(G,x=0,21): 0,seq(n!*coeff(Gser,x^n),n=1..18); # yields the signed sequence

%t g[x_] = FullSimplify[x/(-1 + 1/(-1 + 1/(-1 + 1/(-1 + Log[1 + x]))))] h[x_, n_] = Dt[g[x], {x, n}]; a[x_] = Table[h[x, n]*2^n, {n, 0, 25}]; b = a[0] Abs[b]

%K sign

%O 0,2

%A _Roger L. Bagula_, Jun 29 2005