%I #2 Mar 30 2012 17:34:20
%S 0,-2,-2,-3,-24,30,-1584,18648,-417024,9009792,-234809280,6704112096,
%T -213138355968,7406611617600,-280001933761536,11429619375628800,
%U -501128794469154816,23484526696292281344,-1171437744670467637248,61965733479803762540544
%N E.g.f.: 3x/(-1+1/(-1+1/(-1+log(1+3x)))) = -3x[2-log(1+3x)]/[3-2log(1+x)].
%D C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc. 127 (1997), no. 608, x+97 pp.
%p G:=3*x/(-1+1/(-1+1/(-1+log(1+3*x)))): Gser:=series(G,x=0,24): 0,seq(n!*coeff(Gser,x^n),n=1..21); # yields the signed sequence
%t g[x_] = x/(-1 + 1/(-1 + 1/(-1 + Log[1 + x]))) h[x_, n_] = Dt[g[x], {x, n}]; a[x_] = Table[h[x, n]*2^n, {n, 0, 25}]; b = a[0] Abs[b]
%K sign
%O 0,2
%A _Roger L. Bagula_, Jun 29 2005