login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109523 a(n)=the sum of the (1,2)- and (1,3)-entries of the matrix P^n + T^n, where the 3 by 3 matrices P and T are defined by P=[0,1,0;0,0,1;1,0,0] and T=[0,1,0;0,0,1;1,1,1]. 1
0, 2, 2, 2, 5, 8, 13, 25, 45, 81, 150, 275, 504, 928, 1706, 3136, 5769, 10610, 19513, 35891, 66013, 121415, 223318, 410745, 755476, 1389538, 2555758, 4700770, 8646065, 15902592, 29249425, 53798081, 98950097, 181997601, 334745778 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..34.

EXAMPLE

a(7)=25 because P^7=[0,1,0;0,0,1;1,0,0], T^7=[7,11,13;13,20,24;24,37,44] and so P^7+T^7=[7,12,13;13,20,25;25,37,44].

MAPLE

with(linalg): a:=proc(n) local P, T, v, k: P[1]:=matrix(3, 3, [0, 1, 0, 0, 0, 1, 1, 0, 0]): T[1]:=matrix(3, 3, [0, 1, 0, 0, 0, 1, 1, 1, 1]): v:=matrix(3, 1, [0, 1, 1]): for k from 2 to n do P[k]:=multiply(P[1], P[k-1]): T[k]:=multiply(T[1], T[k-1]) od: evalm(P[n]+T[n])[1, 2]+evalm(P[n]+T[n])[1, 3] end: 0, seq(a(n), n=1..40);

MATHEMATICA

v[0] = {0, 1, 1}; w[0] = {0, 1, 1}; M3 = {{0, 1, 0}, {0, 0, 1}, {1, 0, 0}}; Mt = {{0, 1, 0}, {0, 0, 1}, {1, 1, 1}}; v[n_] := v[n] = M3.v[n - 1] w[n_] := w[n] = Mt.w[n - 1] a = Table[(w[n] + v[n])[[1]], {n, 0, 50}]

CROSSREFS

Cf. A000045, A000213.

Sequence in context: A162145 A208050 A039886 * A008295 A216694 A116697

Adjacent sequences:  A109520 A109521 A109522 * A109524 A109525 A109526

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Jun 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 07:03 EST 2014. Contains 252241 sequences.