login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109523 a(n)=the sum of the (1,2)- and (1,3)-entries of the matrix P^n + T^n, where the 3 by 3 matrices P and T are defined by P=[0,1,0;0,0,1;1,0,0] and T=[0,1,0;0,0,1;1,1,1]. 1
0, 2, 2, 2, 5, 8, 13, 25, 45, 81, 150, 275, 504, 928, 1706, 3136, 5769, 10610, 19513, 35891, 66013, 121415, 223318, 410745, 755476, 1389538, 2555758, 4700770, 8646065, 15902592, 29249425, 53798081, 98950097, 181997601, 334745778 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..34.

EXAMPLE

a(7)=25 because P^7=[0,1,0;0,0,1;1,0,0], T^7=[7,11,13;13,20,24;24,37,44] and so P^7+T^7=[7,12,13;13,20,25;25,37,44].

MAPLE

with(linalg): a:=proc(n) local P, T, v, k: P[1]:=matrix(3, 3, [0, 1, 0, 0, 0, 1, 1, 0, 0]): T[1]:=matrix(3, 3, [0, 1, 0, 0, 0, 1, 1, 1, 1]): v:=matrix(3, 1, [0, 1, 1]): for k from 2 to n do P[k]:=multiply(P[1], P[k-1]): T[k]:=multiply(T[1], T[k-1]) od: evalm(P[n]+T[n])[1, 2]+evalm(P[n]+T[n])[1, 3] end: 0, seq(a(n), n=1..40);

MATHEMATICA

v[0] = {0, 1, 1}; w[0] = {0, 1, 1}; M3 = {{0, 1, 0}, {0, 0, 1}, {1, 0, 0}}; Mt = {{0, 1, 0}, {0, 0, 1}, {1, 1, 1}}; v[n_] := v[n] = M3.v[n - 1] w[n_] := w[n] = Mt.w[n - 1] a = Table[(w[n] + v[n])[[1]], {n, 0, 50}]

CROSSREFS

Cf. A000045, A000213.

Sequence in context: A162145 A208050 A039886 * A008295 A216694 A116697

Adjacent sequences:  A109520 A109521 A109522 * A109524 A109525 A109526

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Jun 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 09:03 EST 2016. Contains 278906 sequences.