login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109522 a(n)=the (1,2)-entry in the matrix P^n + F^n, where the 2 X 2 matrices P and F are defined by P=[0,1;1,0] and F=[0,1;1,1]. 0
0, 2, 1, 3, 3, 6, 8, 14, 21, 35, 55, 90, 144, 234, 377, 611, 987, 1598, 2584, 4182, 6765, 10947, 17711, 28658, 46368, 75026, 121393, 196419, 317811, 514230, 832040, 1346270, 2178309, 3524579, 5702887, 9227466, 14930352, 24157818, 39088169 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..38.

FORMULA

a(n)=A052959(n-1). [From R. J. Mathar, Aug 18 2008]

EXAMPLE

a(8)=21 because P^8=[1,0;0,1], F^8=[13,21;21,34] and so P^8+F^8=[14,21;21,34].

MAPLE

with(linalg): a:=proc(n) local P, F, v, k: P[1]:=matrix(2, 2, [0, 1, 1, 0]): F[1]:=matrix(2, 2, [0, 1, 1, 1]): v:=matrix(2, 1, [0, 1]): for k from 2 to n do P[k]:=multiply(P[1], P[k-1]): F[k]:=multiply(F[1], F[k-1]) od: evalm(P[n]+F[n])[1, 2] end: 0, seq(a(n), n=1..44);

MATHEMATICA

v[0] = {0, 1}; w[0] = {0, 1}; M2 = {{0, 1}, {1, 0}}; Mf = {{0, 1}, {1, 1}} v[n_] := v[n] = M2.v[n - 1] w[n_] := w[n] = Mf.w[n - 1] a = Table[(w[n] + v[n])[[1]], {n, 0, 50}]

CROSSREFS

Cf. A000045.

Sequence in context: A241379 A108949 A167704 * A052959 A257702 A034399

Adjacent sequences:  A109519 A109520 A109521 * A109523 A109524 A109525

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Jun 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 18:38 EDT 2020. Contains 335448 sequences. (Running on oeis4.)