login
A109517
a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,2(n-1)].
3
1, 2, 18, 252, 4880, 120750, 3639384, 129365880, 5298720768, 245738908890, 12728860100000, 728372947109940, 45631105330876416, 3106354479972026374, 228329428483544787840, 18022862954171193750000, 1520481402538463932186624, 136531862779634547726146994
OFFSET
1,2
COMMENTS
The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).
LINKS
FORMULA
For n > 1, a(n) = ((n - 1 + sqrt(n*(n - 1)))^n - (n - 1 - sqrt(n*(n - 1)))^n)/(2*sqrt(n*(n - 1))). - Robert Israel, Oct 19 2021
EXAMPLE
a(4)=252 because if M is the 2 X 2 matrix [0,1;3,6], then M^4 is the 2 X 2 matrix [117,252;756;1629].
MAPLE
with(linalg): a:=proc(n) local A, k: A[1]:=matrix(2, 2, [0, 1, n-1, 2*(n-1)]): for k from 2 to n do A[k]:=multiply(A[k-1], A[1]) od: A[n][1, 2] end: seq(a(n), n=1..19);
# second Maple program:
a:= n-> (<<0|1>, <n-1|2*n-2>>^n)[1, 2]:
seq(a(n), n=1..18); # Alois P. Heinz, Oct 19 2021
MATHEMATICA
M[n_] = If[n > 1, MatrixPower[{{0, 1}, {n - 1, 2*(n - 1)}}, n], {{0, 1}, {1, 1}}] a = Table[M[n][[1, 2]], {n, 1, 50}]
CROSSREFS
Sequence in context: A368466 A337775 A276364 * A213643 A143138 A151362
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 16 2005
STATUS
approved