This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109516 a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,n-1]. 0

%I

%S 1,1,6,45,464,6000,93528,1707111,35721216,843160671,22165100000,

%T 642268811184,20339749638144,698946255836933,25903663544572800,

%U 1029945249481640625,43733528272753917952,1975222567881226040760

%N a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,n-1].

%C The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).

%F a(n) = [x^n] 1/(1 - n*x - n*x^2). - _Paul D. Hanna_, Dec 27 2012

%F a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*n^(n-k) for n>=0 (conjectured). - _Werner Schulte_, Oct 21 2016

%e a(4)=45 because if M is the 2 X 2 matrix [0,1;3,3], then M^4 is the 2 X 2 matrix [36,45;135;171].

%e G.f. = x + x^2 + 6*x^3 + 45*x^4 + 464*x^5 + 6000*x^6 + 93528*x^7 + 1707111*x^8 + ...

%p with(linalg): a:=proc(n) local A,k: A[1]:=matrix(2,2,[0,1,n-1,n-1]): for k from 2 to n do A[k]:=multiply(A[k-1],A[1]) od: A[n][1,2] end: seq(a(n),n=1..20);

%t M[n_] = If[n > 1, MatrixPower[{{0, 1}, {n - 1, n - 1}}, n], {{0, 1}, {1, 1}}] a = Table[M[n][[1, 2]], {n, 1, 50}]

%o (PARI) {a(n)=polcoeff(1/(1-n*x-n*x^2+x*O(x^n)), n)} \\ _Paul D. Hanna_, Dec 27 2012

%Y Cf. A000045, A000166.

%K nonn

%O 1,3

%A _Roger L. Bagula_, Jun 16 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 05:41 EST 2017. Contains 295868 sequences.