login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109516 a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,n-1]. 0
1, 1, 6, 45, 464, 6000, 93528, 1707111, 35721216, 843160671, 22165100000, 642268811184, 20339749638144, 698946255836933, 25903663544572800, 1029945249481640625, 43733528272753917952, 1975222567881226040760 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).

LINKS

Table of n, a(n) for n=1..18.

FORMULA

a(n) = [x^n] 1/(1 - n*x - n*x^2). - Paul D. Hanna, Dec 27 2012

a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*n^(n-k) for n>=0 (conjectured). - Werner Schulte, Oct 21 2016

EXAMPLE

a(4)=45 because if M is the 2 X 2 matrix [0,1;3,3], then M^4 is the 2 X 2 matrix [36,45;135;171].

G.f. = x + x^2 + 6*x^3 + 45*x^4 + 464*x^5 + 6000*x^6 + 93528*x^7 + 1707111*x^8 + ...

MAPLE

with(linalg): a:=proc(n) local A, k: A[1]:=matrix(2, 2, [0, 1, n-1, n-1]): for k from 2 to n do A[k]:=multiply(A[k-1], A[1]) od: A[n][1, 2] end: seq(a(n), n=1..20);

MATHEMATICA

M[n_] = If[n > 1, MatrixPower[{{0, 1}, {n - 1, n - 1}}, n], {{0, 1}, {1, 1}}] a = Table[M[n][[1, 2]], {n, 1, 50}]

PROG

(PARI) {a(n)=polcoeff(1/(1-n*x-n*x^2+x*O(x^n)), n)} \\ Paul D. Hanna, Dec 27 2012

CROSSREFS

Cf. A000045, A000166.

Sequence in context: A228194 A084064 A186925 * A245493 A078865 A160492

Adjacent sequences:  A109513 A109514 A109515 * A109517 A109518 A109519

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Jun 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 04:36 EDT 2017. Contains 287008 sequences.