login
A109515
Prime numbers that are the sum of two perfect powers.
1
2, 5, 13, 17, 29, 31, 37, 41, 43, 53, 59, 61, 73, 89, 97, 101, 109, 113, 127, 137, 149, 157, 173, 181, 193, 197, 223, 229, 233, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 337, 347, 349, 353, 359, 373, 379, 389, 397, 401, 409, 421, 433, 439, 443, 449
OFFSET
1,1
LINKS
EXAMPLE
The prime 17 is a term because 17 = 2^3 + 3^2.
MAPLE
N:= 1000:
PP:= {1, seq(seq(x^k, x=2..floor(N^(1/k))), k=2..ilog2(N))}:
A:= select(t -> t<=N and isprime(t), {seq(seq(PP[i]+PP[j], i=1..j), j=1..nops(PP))}):
sort(convert(A, list)); # Robert Israel, Jan 22 2018
MATHEMATICA
lim=450; Select[Union[Total/@Permutations[Flatten[Table[Union[Select[Range[2, lim], ResourceFunction["PerfectPowerQ"][#]&], {1}], 2]], {2}]], PrimeQ[#]&&#<lim&] (* James C. McMahon, Apr 08 2024 *)
CROSSREFS
Cf. A001597 (perfect powers). Includes A002144.
Sequence in context: A019362 A317964 A075451 * A135933 A086807 A002313
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Jul 01 2005
EXTENSIONS
Offset changed to 1 by Robert Israel, Jan 22 2018
STATUS
approved