

A109515


Prime numbers that are the sum of two perfect powers.


1



2, 5, 13, 17, 29, 31, 37, 41, 43, 53, 59, 61, 73, 89, 97, 101, 109, 113, 127, 137, 149, 157, 173, 181, 193, 197, 223, 229, 233, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 337, 347, 349, 353, 359, 373, 379, 389, 397, 401, 409, 421, 433, 439, 443, 449
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


EXAMPLE

The prime 17 is a term because 17 = 2^3 + 3^2.


MAPLE

N:= 1000:
PP:= {1, seq(seq(x^k, x=2..floor(N^(1/k))), k=2..ilog2(N))}:
A:= select(t > t<=N and isprime(t), {seq(seq(PP[i]+PP[j], i=1..j), j=1..nops(PP))}):
sort(convert(A, list)); # Robert Israel, Jan 22 2018


CROSSREFS

Cf. A001597 (perfect powers). Includes A002144.
Sequence in context: A019362 A317964 A075451 * A135933 A086807 A002313
Adjacent sequences: A109512 A109513 A109514 * A109516 A109517 A109518


KEYWORD

nonn


AUTHOR

Rick L. Shepherd, Jul 01 2005


EXTENSIONS

Offset changed to 1 by Robert Israel, Jan 22 2018


STATUS

approved



