%I
%S 5,9696,19781,199898
%N Let n be an integer consisting of m digits. Then n is a Pithy number if the nth mtuple in the decimal digits of Pi is string n.
%C The next term is greater than 10^7
%H David G. Andersen, <a href="http://www.angio.net/pi/piquery">The PiSearch Page</a>.
%e 5 is a term because the 5th single digit in Pi is 5. Number 9696 is a term because the 9696th quadruplet in the decimal digits of Pi is 9696. (cf. 3.14159...)
%t PithyNumbersWith3[m_] := Module[{cc = m(10^m)+m, sol, aa}, sol = Partition[RealDigits[Pi, 10, cc] // First, m]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i, Length[sol]}];] Example: PithyNumbersWith3[5] produces all 5digit Pithy numbers
%Y Cf. A109513, A057679, A057680.
%K base,more,nonn
%O 0,1
%A _Colin Rose_, Jul 01 2005
