The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109437 a(-1) = a(0) = 0, a(1) = 1; a(n) = 5a(n-1) - 5a(n-2) + a(n-3) + 2*(-1)^(n+1), alternatively a(n) = 3a(n-1) + 3a(n-2) - a(n-3). 6
 0, 1, 3, 12, 44, 165, 615, 2296, 8568, 31977, 119339, 445380, 1662180, 6203341, 23151183, 86401392, 322454384, 1203416145, 4491210195, 16761424636, 62554488348, 233456528757, 871271626679, 3251629977960, 12135248285160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See A105968 for a similar sequence. Observe the four periodic sequences (1,1,1,1,); (-1,-1,-1,-1); (1,-1,1,-1,); (-1,1,-1,1,); (a(n)) is the (Type 1A) jbasejfor-transform of the periodic sequence (1,1,1,1) with respect to the floretion given in the program code. A109438 is the (Type 1A) jbasejfor-transform of the periodic sequence (-1,-1,-1,-1) with respect to the floretion given in the program code. A001834 is the (Type 1A) jbasejfor-transform of the periodic sequence (1,-1,1,-1) with respect to the floretion given in the program code. A102871 is the (Type 1A) jbasejfor-transform of the periodic sequence (-1,1,-1,1) with respect to the floretion given in the program code. REFERENCES R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., 58:2 (2020), 140-142. LINKS P. Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6 Index entries for linear recurrences with constant coefficients, signature (3,3,-1). FORMULA G.f. x/((x+1)(x^2-4x+1)) a(n) = A002530(n)*A002530(n+1). - Zerinvary Lajos, Feb 08 2007 a(-1 - n) = -a(n). a(2*n) = A011916(n). a(2*n + 1) = -A011916(-1 -n). - Michael Somos, Jul 27 2012 6*a(n) = A001353(n)+A001353(n+1)-(-1)^n. - R. J. Mathar, Sep 07 2016 EXAMPLE x + 3*x^2 + 12*x^3 + 44*x^4 + 165*x^5 + 615*x^6 + 2296*x^7 + 8568*x^8 + ... MAPLE with(numtheory):a := cfrac (tan(Pi/3), 60): > b := cfrac (tan(Pi/6), 60): > seq(nthnumer (b, i)*nthdenom (a, i), i=0..24 ); # Zerinvary Lajos, Feb 08 2007 MATHEMATICA LinearRecurrence[{3, 3, -1}, {0, 1, 3}, 40] (* Harvey P. Dale, Apr 21 2018 *) PROG Floretion Algebra Multiplication Program, FAMP Code: (-1)^(n+1)jbasejfor[ + .5'ii' + .5'kk' + .5'ij' + .5'ji' + .5'jk' + .5'kj'] 1vesfor = (1, 1, 1, 1, ) (PARI) {a(n) = local(s=1); if( n<0, n = -1 - n; s=-1); s * polcoeff( x / ((x + 1) * (x^2 -4*x + 1)) + x * O(x^n), n)} /* Michael Somos, Jul 27 2012 */ CROSSREFS Cf. A001834, A002530, A011916, A102871, A109438. Sequence in context: A190051 A220633 A296225 * A331473 A005656 A339066 Adjacent sequences:  A109434 A109435 A109436 * A109438 A109439 A109440 KEYWORD nonn,easy AUTHOR Creighton Dement, Jun 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 07:48 EST 2022. Contains 358353 sequences. (Running on oeis4.)