OFFSET
1,1
COMMENTS
A073904(2^n) is the product of the first n members of this sequence. Generalization: for any prime p, we may consider the analogous permutation of numbers of the form q^(p^k) such that a(p^j)=p^(p^j); then A073904(p^n)=(product of the first n members)^(p-1). - David Wasserman and Thomas Ordowski. Corrected by Thomas Ordowski, Jun 06 2015
FORMULA
a(2^j)=2^(2^j). So a(1)=2 for j=0; a(2)=4 for j=1; a(4)=16 for j=2.
A073904(2^n)=2*4*3*...*a(n) for every n.
EXAMPLE
Numbers: 2, 3, 2^2, 5, 7, 3^2, 11, 13, 2^(2^2), 17, ..., 2^(2^3), ...
Permutation: 2, 2^2, 3, 2^(2^2), 5, 7, 3^2, 2^(2^3), 11, 13, 17, ...
If n=4 then A073904(16)=2*4*3*16=384.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Aug 26 2005
EXTENSIONS
Definition edited by N. J. A. Sloane, Oct 27 2014
More terms from Thomas Ordowski, Jun 05 2015
STATUS
approved