

A109429


Rearrange terms of A050376 so that a(2^j)=2^(2^j) for j>=0.


1



2, 4, 3, 16, 5, 7, 9, 256, 11, 13, 17, 19, 23, 25, 29, 65536, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 4294967296, 89, 97
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A073904(2^n) is the product of the first n members of this sequence. Generalization: for any prime p, we may consider the analogous permutation of numbers of the form q^(p^k) such that a(p^j)=p^(p^j); then A073904(p^n)=(product of the first n members)^(p1).  David Wasserman and Thomas Ordowski. Corrected by Thomas Ordowski, Jun 06 2015


LINKS

Table of n, a(n) for n=1..34.


FORMULA

a(2^j)=2^(2^j). So a(1)=2 for j=0; a(2)=4 for j=1; a(4)=16 for j=2.
A073904(2^n)=2*4*3*...*a(n) for every n.


EXAMPLE

Numbers: 2, 3, 2^2, 5, 7, 3^2, 11, 13, 2^(2^2), 17, ..., 2^(2^3), ...
Permutation: 2, 2^2, 3, 2^(2^2), 5, 7, 3^2, 2^(2^3), 11, 13, 17, ...
If n=4 then A073904(16)=2*4*3*16=384.


CROSSREFS

Cf. A050376.
Sequence in context: A259476 A271363 A115399 * A114894 A183169 A308317
Adjacent sequences: A109426 A109427 A109428 * A109430 A109431 A109432


KEYWORD

nonn


AUTHOR

Thomas Ordowski, Aug 26 2005


EXTENSIONS

Definition edited by N. J. A. Sloane, Oct 27 2014
More terms from Thomas Ordowski, Jun 05 2015


STATUS

approved



