

A109379


Orders of noncyclic simple groups (with repetition).


4



60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The first repetition is at 20160 (= 8!/2) and the first proof that there exist two nonisomorphic simple groups of this order was given by the American mathematician Ida May Schottenfels (18691942).  David Callan, Nov 21 2006


REFERENCES

See A001034 for references and other links.


LINKS

David A. Madore, Table of n, a(n) for n = 1..493 [taken from link below]
David A. Madore, More terms
John McKay, The nonabelian simple groups g, g<10^6  character tables, Commun. Algebra 7 (1979) no. 13, 14071445.
Ida May Schottenfels, Two NonIsomorphic Simple Groups of the Same Order 20,160, Annals of Math., 2nd Ser., Vol. 1, No. 1/4 (1899), pp. 147152.
Index entries for sequences related to groups


CROSSREFS

Cf. A000001, A000679, A005180, A001228, A060793, A056866, A056868, A119630.
Cf. A001034 (orders without repetition), A119648 (orders that are repeated).
Sequence in context: A044773 A256633 A118671 * A001034 A119630 A216480
Adjacent sequences: A109376 A109377 A109378 * A109380 A109381 A109382


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane, Jul 29 2006


STATUS

approved



