

A109374


Irregular table read by rows: Row n is the terms of the continued fraction for prime(n+1)/prime(n).


6



1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 5, 2, 1, 3, 4, 1, 8, 2, 1, 4, 1, 3, 1, 3, 1, 5, 1, 14, 2, 1, 5, 6, 1, 9, 4, 1, 20, 2, 1, 10, 1, 3, 1, 7, 1, 5, 1, 8, 1, 5, 1, 29, 2, 1, 10, 6, 1, 16, 1, 3, 1, 35, 2, 1, 12, 6, 1, 19, 1, 3, 1, 13, 1, 5, 1, 11, 8, 1, 24, 4, 1, 50, 2, 1, 25, 1, 3, 1, 53, 2, 1, 27, 4, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sequence A071866 gives the number of terms in the nth continued fraction.
If n is in A029707, row n is [1, (prime(n)1)/2, 2].  Robert Israel, May 29 2018


LINKS

Robert Israel, Table of n, a(n) for n = 1..10003 (rows 1 to 2533, flattened)


EXAMPLE

Prime(4)/prime(3) = 7/5 = 1+ 1/(2+1/2), so the terms associated with the 3rd continued fraction are 1, 2, 2.


MAPLE

seq(op(convert(ithprime(n+1)/ithprime(n), confrac)), n=1..100); # Robert Israel, May 29 2018


MATHEMATICA

Flatten[Table[ContinuedFraction[Prime[n + 1]/Prime[n]], {n, 30}]] (*Chandler*)


CROSSREFS

Cf. A029707, A071866, A110021, A112323, A112324, A112768.
Sequence in context: A240545 A091591 A227796 * A079706 A250005 A319907
Adjacent sequences: A109371 A109372 A109373 * A109375 A109376 A109377


KEYWORD

nonn,tabf,look


AUTHOR

Leroy Quet, Aug 24 2005


EXTENSIONS

Extended by Ray Chandler and Robert G. Wilson v, Aug 25 2005
Edited by Charles R Greathouse IV, Apr 23 2010
Definition corrected by Leroy Quet, May 10 2010


STATUS

approved



