login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109363 a(n) = 4*2^n - 3*n - 5. 3
-1, 0, 5, 18, 47, 108, 233, 486, 995, 2016, 4061, 8154, 16343, 32724, 65489, 131022, 262091, 524232, 1048517, 2097090, 4194239, 8388540, 16777145, 33554358, 67108787, 134217648, 268435373, 536870826, 1073741735, 2147483556, 4294967201, 8589934494, 17179869083, 34359738264 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This sequence appears alongside the Eulerian numbers A000295 in the batch of sequences generated by the floretion given in the program code.

LINKS

Table of n, a(n) for n=0..33.

Index entries for linear recurrences with constant coefficients, signature (4, -5, 2).

FORMULA

G.f. (1-4*x)/((2*x-1)*(x-1)^2)

a(0)=-1, a(n) = 2*a(n-1) + 3*n - 1. - Vincenzo Librandi, Jan 29 2011

a(0)=-1, a(1)=0, a(2)=5, a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Harvey P. Dale, Jun 13 2011

a(n)-a(n-1) = A036563(n+1). - R. J. Mathar, Jun 18 2019

MAPLE

A109363 := proc(n)

    4*2^n-3*n-5 ;

end proc:

seq(A109363(n), n=0..10) ; # R. J. Mathar, Jun 18 2019

MATHEMATICA

f[n_]:=4*2^n-3*n-5; f[Range[0, 20]] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2011 *)

LinearRecurrence[{4, -5, 2}, {-1, 0, 5}, 20] (* Harvey P. Dale, Jun 13 2011 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 4ibaseisumseq[ - .5'i - .75'j - .5i' - .75j' + .25'ii' + .25'jj' - 1.25'kk' - .25'ik' + .5'jk' - .25'ki' + .5'kj' + .75e]; sumtype: Y[8] = (int)Y[6] - (int)Y[7] + Y[8] + sum (internal program code)

CROSSREFS

Cf. A000295.

Sequence in context: A273566 A217866 A256539 * A218214 A146213 A176145

Adjacent sequences:  A109360 A109361 A109362 * A109364 A109365 A109366

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Aug 22 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 19:14 EDT 2020. Contains 334580 sequences. (Running on oeis4.)