%I
%S 0,1,5,10,8,11,11,14,10,17,19,24,16,21,21,30,24,31,27,34,26,37,35,44,
%T 32,41,37,50,40,51,43,54,42,57,51,64,48,61,53,70,56,71,59,74,58,77,67,
%U 84,64,81,69,90,72,91,75,94,74,97,83,104,80,101,85,110,88,111,91,114,90
%N Expansion of x*(1+4*x+5*x^2x^3+6*x^4+x^54*x^6) / ((x^2+1)*(x^2x+1)*(x1)^2*(x+1)^2).
%H Colin Barker, <a href="/A109360/b109360.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,2,1,0,1,1).
%F a(n) = a(n1)  a(n3) + 2*a(n4)  a(n5) + a(n7)  a(n8) for n>7.  _Colin Barker_, May 15 2019
%o Floretion Algebra Multiplication Program, FAMP Code: 2tessumseq[.25'i + .25i' + .5'ij' + .5'ji' + .25'jk' + .25'kj']; sumtype: (Y[15], *, sum)
%o (PARI) concat(0, Vec(x*(1 + 4*x + 5*x^2  x^3 + 6*x^4 + x^5  4*x^6) / ((1  x)^2*(1 + x)^2*(1  x + x^2)*(1 + x^2)) + O(x^40))) \\ _Colin Barker_, May 15 2019
%K nonn,easy
%O 0,3
%A _Creighton Dement_, Aug 22 2005
