login
Zsigmondy numbers for a = 5, b = 3: Zs(n, 5, 3) is the greatest divisor of 5^n - 3^n (A005058) that is relatively prime to 5^m - 3^m for all positive integers m < n.
9

%I #15 Feb 16 2025 08:32:58

%S 2,1,49,17,1441,19,37969,353,19729,421,24325489,481,609554401,10039,

%T 216001,198593,381405156481,12979,9536162033329,288961,18306583,

%U 6125659,5960417405949649,346561,103408180634401,152787181,3853528045489,179655841,93132223146359169121

%N Zsigmondy numbers for a = 5, b = 3: Zs(n, 5, 3) is the greatest divisor of 5^n - 3^n (A005058) that is relatively prime to 5^m - 3^m for all positive integers m < n.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ZsigmondyTheorem.html">Zsigmondy's Theorem</a>

%o (PARI) rad(n) = factorback(factor(n)[, 1])

%o lista(nn) = {prad = 1; for (n=1, nn, val = 5^n-3^n; d = divisors(val); gd = 1; forstep(k=#d, 1, -1, if (gcd(d[k], prad) == 1, g = d[k]; break)); print1(g, ", "); prad = ra(prad*val););} \\ _Michel Marcus_, Nov 15 2016

%Y Cf. A064078, A064079, A064080, A064081, A064082, A064083, A109325, A109348, A109349.

%K nonn,changed

%O 1,1

%A _Jonathan Vos Post_, Aug 21 2005

%E Edited, corrected and extended by _Ray Chandler_, Aug 26 2005

%E Definition corrected by _Jerry Metzger_, Nov 04 2009

%E More terms from _Michel Marcus_, Nov 14 2016