login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109301 a(n) = rhig(n) = rote height in gammas of n, where the "rote" corresponding to a positive integer n is a graph derived from the primes factorization of n, as illustrated in the comments. 27
0, 1, 2, 2, 3, 2, 3, 3, 2, 3, 4, 2, 3, 3, 3, 3, 4, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 5, 4, 4, 4, 3, 2, 3, 4, 3, 3, 4, 3, 4, 4, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 5, 3, 3, 5, 3, 3, 3, 4, 5, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 5, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 5, 4, 4, 4, 4, 3, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Table of Rotes and Primal Functions for Positive Integers from 1 to 40

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` o-o ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` | ` ` ` ` ` ` `

` ` ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` `

` ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` `

O ` ` ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

{ } ` ` ` ` ` 1:1 ` ` ` ` ` 2:1 ` ` ` ` ` 1:2 ` ` ` ` ` 3:1 ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

1 ` ` ` ` ` ` 2 ` ` ` ` ` ` 3 ` ` ` ` ` ` 4 ` ` ` ` ` ` 5 ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` `

` ` ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` `

` ` o-o ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` o-o o-o ` ` ` ` ` o-o ` ` ` `

` ` | ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` | ` | ` ` ` ` ` ` | ` ` ` ` `

o-o o-o ` ` ` o-o ` ` ` ` ` o-o ` ` ` ` ` o---o ` ` ` ` o-o o-o ` ` ` `

| ` | ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` `

O===O ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

1:1 2:1 ` ` ` 4:1 ` ` ` ` ` 1:3 ` ` ` ` ` 2:2 ` ` ` ` ` 1:1 3:1 ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

6 ` ` ` ` ` ` 7 ` ` ` ` ` ` 8 ` ` ` ` ` ` 9 ` ` ` ` ` ` 10` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` o-o ` ` ` `

| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` | ` ` ` ` `

o-o ` ` ` ` ` ` o-o o-o ` ` o-o o-o ` ` ` ` ` o-o ` ` ` o-o o-o ` ` ` `

| ` ` ` ` ` ` ` | ` | ` ` ` | ` | ` ` ` ` ` ` | ` ` ` ` | ` | ` ` ` ` `

o-o ` ` ` ` ` o-o ` o-o ` ` o===o-o ` ` ` o-o o-o ` ` ` o-o o-o ` ` ` `

| ` ` ` ` ` ` | ` ` | ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` | ` | ` ` ` ` `

O ` ` ` ` ` ` O=====O ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` O===O ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

5:1 ` ` ` ` ` 1:2 2:1 ` ` ` 6:1 ` ` ` ` ` 1:1 4:1 ` ` ` 2:1 3:1 ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

11` ` ` ` ` ` 12` ` ` ` ` ` 13` ` ` ` ` ` 14` ` ` ` ` ` 15` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` `

` ` o-o ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` o-o ` ` `

` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` `

` o-o ` ` ` ` o-o ` ` ` ` ` ` ` o-o o-o ` o-o ` ` ` ` ` ` o-o o-o ` ` `

` | ` ` ` ` ` | ` ` ` ` ` ` ` ` | ` | ` ` | ` ` ` ` ` ` ` | ` | ` ` ` `

o-o ` ` ` ` ` o-o ` ` ` ` ` o-o o---o ` ` o-o ` ` ` ` ` o-o ` o-o ` ` `

| ` ` ` ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` | ` ` ` ` ` ` | ` ` | ` ` ` `

O ` ` ` ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` O ` ` ` ` ` ` O=====O ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

1:4 ` ` ` ` ` 7:1 ` ` ` ` ` 1:1 2:2 ` ` ` 8:1 ` ` ` ` ` 1:2 3:1 ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

16` ` ` ` ` ` 17` ` ` ` ` ` 18` ` ` ` ` ` 19` ` ` ` ` ` 20` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` o-o ` ` ` ` o-o ` ` ` o-o o-o ` ` ` ` o-o ` ` ` ` o-o ` ` ` ` ` `

` ` ` | ` ` ` ` ` | ` ` ` ` | ` | ` ` ` ` ` | ` ` ` ` ` | ` ` ` ` ` ` `

o-o o-o ` ` ` ` ` o-o ` ` ` o---o ` ` ` ` ` o-o o-o ` ` o-o o-o ` ` ` `

| ` | ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` | ` | ` ` ` | ` | ` ` ` ` `

o-o o-o ` ` ` o-o o-o ` ` ` o-o ` ` ` ` ` o-o ` o-o ` ` o---o ` ` ` ` `

| ` | ` ` ` ` | ` | ` ` ` ` | ` ` ` ` ` ` | ` ` | ` ` ` | ` ` ` ` ` ` `

O===O ` ` ` ` O===O ` ` ` ` O ` ` ` ` ` ` O=====O ` ` ` O ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

2:1 4:1 ` ` ` 1:1 5:1 ` ` ` 9:1 ` ` ` ` ` 1:3 2:1 ` ` ` 3:2 ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

21` ` ` ` ` ` 22` ` ` ` ` ` 23` ` ` ` ` ` 24` ` ` ` ` ` 25` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` o-o ` ` ` o-o ` ` ` ` ` ` ` o-o ` ` ` o-o ` ` ` ` ` ` ` o-o ` `

` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` | ` ` `

` ` o-o o-o ` o-o o-o ` ` ` ` o-o o-o ` ` o-o o-o ` ` ` ` ` o-o o-o ` `

` ` | ` | ` ` | ` | ` ` ` ` ` | ` | ` ` ` | ` | ` ` ` ` ` ` | ` | ` ` `

o-o o===o-o ` o---o ` ` ` ` o-o ` o-o ` ` o===o-o ` ` ` o-o o-o o-o ` `

| ` | ` ` ` ` | ` ` ` ` ` ` | ` ` | ` ` ` | ` ` ` ` ` ` | ` | ` | ` ` `

O===O ` ` ` ` O ` ` ` ` ` ` O=====O ` ` ` O ` ` ` ` ` ` O===O===O ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

1:1 6:1 ` ` ` 2:3 ` ` ` ` ` 1:2 4:1 ` ` ` 10:1` ` ` ` ` 1:1 2:1 3:1 ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

26` ` ` ` ` ` 27` ` ` ` ` ` 28` ` ` ` ` ` 29` ` ` ` ` ` 30` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

o-o ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` `

| ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `

o-o ` ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` ` ` ` o-o ` ` ` o-o ` o-o ` ` `

| ` ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` ` ` ` | ` ` ` ` | ` ` | ` ` ` `

o-o ` ` ` ` ` ` o-o ` ` ` ` o-o o-o ` ` ` ` ` o-o ` ` ` o-o o-o ` ` ` `

| ` ` ` ` ` ` ` | ` ` ` ` ` | ` | ` ` ` ` ` ` | ` ` ` ` | ` | ` ` ` ` `

o-o ` ` ` ` ` o-o ` ` ` ` ` o-o o-o ` ` ` o-o o-o ` ` ` o-o o-o ` ` ` `

| ` ` ` ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` | ` | ` ` ` ` | ` | ` ` ` ` `

O ` ` ` ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` O===O ` ` ` ` O===O ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

11:1` ` ` ` ` 1:5 ` ` ` ` ` 2:1 5:1 ` ` ` 1:1 7:1 ` ` ` 3:1 4:1 ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

31` ` ` ` ` ` 32` ` ` ` ` ` 33` ` ` ` ` ` 34` ` ` ` ` ` 35` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` o-o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` o-o o-o ` ` ` ` ` o-o ` ` ` ` ` ` o-o ` ` o-o o-o ` ` `

` ` ` ` ` ` ` ` | ` | ` ` ` ` ` ` | ` ` ` ` ` ` ` | ` ` ` | ` | ` ` ` `

` o-o o-o o-o o-o ` o-o ` ` ` ` o-o ` ` ` o-o o-o o-o ` ` o-o o-o ` ` `

` | ` | ` | ` | ` ` | ` ` ` ` ` | ` ` ` ` | ` | ` | ` ` ` | ` | ` ` ` `

o-o ` o---o ` o=====o-o ` ` o-o o-o ` ` ` o-o o===o-o ` o-o ` o-o ` ` `

| ` ` | ` ` ` | ` ` ` ` ` ` | ` | ` ` ` ` | ` | ` ` ` ` | ` ` | ` ` ` `

O=====O ` ` ` O ` ` ` ` ` ` O===O ` ` ` ` O===O ` ` ` ` O=====O ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

1:2 2:2 ` ` ` 12:1` ` ` ` ` 1:1 8:1 ` ` ` 2:1 6:1 ` ` ` 1:3 3:1 ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

36` ` ` ` ` ` 37` ` ` ` ` ` 38` ` ` ` ` ` 39` ` ` ` ` ` 40` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `

In these Figures, "extended lines of identity" like o===o indicate identified nodes and capital O is the root node. The rote height in gammas is found by finding the number of graphs of the following shape between the root and one of the highest nodes of the tree:

o--o

|

o

A sequence like this, which can be regarded as a nonnegative integer measure on positive integers, may have as many as 3 other sequences associated with it. Given that the fiber of a function f at n is all the domain elements that map to n, we always have the fiber minimum or minimum inverse function and may also have the fiber cardinality and the fiber maximum or maximum inverse function. For A109301, the minimum inverse is A007097(n) = min {k : A109301(k) = n}, giving the first positive integer whose rote height is n; the fiber cardinality is A109300, giving the number of positive integers of rote height n; the maximum inverse, g(n) = max {k : A109301(k) = n}, giving the last positive integer whose rote height is n, has the following initial terms: g(0) = { } = 1, g(1) = 1:1 = 2, g(2) = 1:2 2:2 = 36, while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly 7.840858554516122655953405327738 x 10^371.

LINKS

Table of n, a(n) for n=1..100.

J. Awbrey, Riffs and Rotes

FORMULA

Writing (prime(i))^j as i:j, the prime factorization of a positive integer n can be written as n = prod_(k = 1 to m) i(k):j(k). This sets up the formula: rhig(n) = 1 + max_(k = 1 to m) {rhig(i(k)), rhig(j(k))}, where rhig(1) = 0.

EXAMPLE

Writing (prime(i))^j as i:j, we have:

802701 = 2:2 8638:1

8638 = 1:1 4:1 113:1

113 = 30:1

30 = 1:1 2:1 3:1

4 = 1:2

3 = 2:1

2 = 1:1

1 = { }

So rote(802701) is the graph:

` ` ` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` o-o

` ` ` ` ` ` ` ` ` ` ` ` ` | `

` ` ` ` ` ` ` ` ` ` ` o-o o-o

` ` ` ` ` ` ` ` ` ` ` | ` | `

` ` ` ` ` ` ` o-o o-o o-o o-o

` ` ` ` ` ` ` | ` | ` | ` | `

` ` ` ` ` ` o-o ` o===o===o-o

` ` ` ` ` ` | ` ` | ` ` ` ` `

o-o o-o o-o o-o ` o---------o

| ` | ` | ` | ` ` | ` ` ` ` `

o---o ` o===o=====o---------o

| ` ` ` | ` ` ` ` ` ` ` ` ` `

O=======O ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` ` ` `

Therefore rhig(802701) = 6.

CROSSREFS

Cf. A007097, A050924, A061396, A062504, A062537, A062860.

Cf. A106177, A108352, A108371, A109300, A111791 to A111800.

Sequence in context: A245555 A031266 A238459 * A107573 A081308 A070210

Adjacent sequences:  A109298 A109299 A109300 * A109302 A109303 A109304

KEYWORD

nonn

AUTHOR

Jon Awbrey, Jun 24 2005 - Jul 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 12:33 EST 2019. Contains 329916 sequences. (Running on oeis4.)