%I #24 Sep 08 2022 08:45:19
%S -36,-10,-4,126,1820,9614,33660,92966,219356,462150,893564,1614830,
%T 2763036,4518686,7113980,10841814,16065500,23229206,32869116,45625310,
%U 62254364,83642670,110820476,144976646,187474140,239866214,303913340
%N a(n) = n^6 - 11n^4 + 36n^2 - 36.
%C All primes are prime divisors.
%D G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 2, Sect. 1, Problem 102.
%H Michael De Vlieger, <a href="/A109256/b109256.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F a(n) = (n^2 - 2)*(n^2 - 3)*(n^2 - 6).
%F G.f.: (-36 + 242*x - 690*x^2 + 1204*x^3 - 56*x^4 + 66*x^5 - 10*x^6)/(1-x)^7. [_Colin Barker_, May 11 2012]
%t Array[#^6 - 11 #^4 + 36 #^2 - 36 &, 27, 0] (* _Michael De Vlieger_, Jan 22 2018 *)
%o (Magma)[n^6 - 11*n^4 + 36*n^2 - 36: n in [0..40]]; // _Vincenzo Librandi_, Dec 26 2010
%o (PARI) a(n)=n^6-11*n^4+36*n^2-36 \\ _Charles R Greathouse IV_, May 11 2012
%K sign,easy
%O 0,1
%A _Reinhard Zumkeller_, Aug 20 2005