This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109244 A tree-node counting triangle. 3
 1, 1, 1, 4, 2, 1, 13, 7, 3, 1, 46, 24, 11, 4, 1, 166, 86, 40, 16, 5, 1, 610, 314, 148, 62, 22, 6, 1, 2269, 1163, 553, 239, 91, 29, 7, 1, 8518, 4352, 2083, 920, 367, 128, 37, 8, 1, 32206, 16414, 7896, 3544, 1461, 541, 174, 46, 9, 1, 122464, 62292, 30086, 13672, 5776, 2232 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Columns include A026641,A014300,A014301. Inverse matrix is A109246. Row sums are A014300. Diagonal sums are A109245. LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened FORMULA Number triangle T(n, k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n+i-k, i-k). Riordan array (1/(1-x*c(x)-2*x^2*c(x)^2), x*c(x)) where c(x)=g.f. of A000108. The production matrix M (discarding the zeros) is: 1, 1; 3, 1, 1; 3, 1, 1, 1; 3, 1, 1, 1, 1; ... such that the n-th row of the triangle is the top row of M^n. - Gary W. Adamson, Feb 16 2012 EXAMPLE Rows begin 1; 1,1; 4,2,1; 13,7,3,1; 46,24,11,4,1; 166,86,40,16,5,1; MATHEMATICA Table[Sum[(-1)^(n-j)*Binomial[n+j-k, j-k], {j, 0, n}], {n, 0, 12}, {k, 0, n}] //Flatten  (* G. C. Greubel, Feb 19 2019 *) PROG (PARI) {T(n, k) = sum(j=0, n, (-1)^(n-j)*binomial(n+j-k, j-k))}; for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 19 2019 (MAGMA) [[(&+[(-1)^(n-j)*Binomial(n+j-k, j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019 (Sage) [[sum((-1)^(n-j)*binomial(n+j-k, j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019 (GAP) Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j-> (-1)^(n-j)*Binomial(n+j-k, j-k) )))); # G. C. Greubel, Feb 19 2019 CROSSREFS Sequence in context: A152818 A302235 A242861 * A171650 A225476 A143777 Adjacent sequences:  A109241 A109242 A109243 * A109245 A109246 A109247 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Jun 23 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 03:50 EDT 2019. Contains 324338 sequences. (Running on oeis4.)