OFFSET
0,2
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..5000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
a(n) = n*12/gcd(n, 12).
a(n) = 12*A051724(n). - R. J. Mathar, Feb 12 2019
From Colin Barker, Mar 04 2019: (Start)
G.f.: 12*x*(1 + x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 2*x^7 + 3*x^8 + 5*x^9 + 11*x^10 + x^11 + 11*x^12 + 5*x^13 + 3*x^14 + 2*x^15 + 7*x^16 + x^17 + 5*x^18 + x^19 + x^20 + x^21 + x^22) / (1 - 2*x^12 + x^24).
a(n) = 2*a(n-12) - a(n-24) for n>23.
(End)
Sum_{k=1..n} a(k) ~ (77/24) * n^2. - Amiram Eldar, Nov 26 2022
MATHEMATICA
Array[LCM[#, 12]&, 60, 0] (* Harvey P. Dale, Mar 26 2015 *)
PROG
(Sage) [lcm(n, 12) for n in range(0, 57)] # Zerinvary Lajos, Jun 09 2009
(GAP) List([0..60], n->Lcm(n, 12)); # Muniru A Asiru, Mar 04 2019
(PARI) concat(0, Vec(12*x*(1 + x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 2*x^7 + 3*x^8 + 5*x^9 + 11*x^10 + x^11 + 11*x^12 + 5*x^13 + 3*x^14 + 2*x^15 + 7*x^16 + x^17 + 5*x^18 + x^19 + x^20 + x^21 + x^22) / (1 - 2*x^12 + x^24) + O(x^40))) \\ Colin Barker, Mar 04 2019
(PARI) for(n=0, 60, print1(lcm(n, 12), ", ")) \\ G. C. Greubel, Mar 06 2019
(Magma) [LCM(n, 12): n in [0..60]]; // G. C. Greubel, Mar 06 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jun 18 2005
STATUS
approved