OFFSET
1,5
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.68).
FORMULA
Multiplicative with a(2^e)=a(3^e)=1, a(p^e)=(p^(e+1)-1)/(p-1) if p = 1, 11 (mod 12), a(p^e)=((-p)^(e+1)-1)/(-p-1) if p = 5, 7 (mod 12).
G.f.: 1-Product_{k>0} (1-x^k)(1-x^(3k))(1-x^(4k))^2/(1+x^(6k))^2 = Sum_{k>0} x^k*(1-3*x^(2k)+x^(4k))*(1+x^(2k))^3/(1+x^(6k))^2.
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(24*sqrt(3)) = 0.237425... . - Amiram Eldar, Jan 29 2024
MATHEMATICA
f[p_, e_] := If[MemberQ[{1, 11}, Mod[p, 12]], (p^(e+1)-1)/(p-1), ((-p)^(e+1)-1)/(-p-1)]; f[2, e_] := 1; f[3, e_] := 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 05 2023 *)
PROG
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-X)/(1-p*kronecker(12, p)*X))[n])
(PARI) {a(n)=local(A); if(n<1, 0, A=x*O(x^n); polcoeff( 1-eta(x+A)*eta(x^3+A)*eta(x^4+A)^2*eta(x^6+A)^2/eta(x^12+A)^2, n))}
(PARI) my(N=99, q='x+O('x^N)); Vec(1-eta(q)*eta(q^3)*(eta(q^4)*eta(q^6))^2/eta(q^12)^2) \\ Joerg Arndt, Sep 05 2023
CROSSREFS
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Jun 17 2005
STATUS
approved