The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108958 Number of unordered pairs of distinct length-n binary words having the same number of 1's. 3
 0, 1, 6, 27, 110, 430, 1652, 6307, 24054, 91866, 351692, 1350030, 5196204, 20050108, 77542376, 300507427, 1166737574, 4537436578, 17672369756, 68922740122, 269127888644, 1052047384708, 4116711169496, 16123793452942, 63205286441660, 247959232919620 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Equals row sums of triangle A143418, starting with a(2). - Gary W. Adamson, Aug 14 2008 In coupled systems of n spin 1/2 particles (magnetic resonance) where the spin state of the i-th particle can be coded as 0 (Sz_i=-1/2) or 1 (Sz_i=+1/2), number of distinct (vw). - Stanislav Sykora, Jun 07 2012 a(n) is the number of lattice paths from (0,0) to (n,n) using E(1,0) and N(0,1) as steps that horizontally cross the diagonal y = x with odd many times. For example, a(2) = 1 because there is only one path that horizontally crosses the diagonal with odd many times, namely, NEEN. - Ran Pan, Feb 01 2016 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..1664 Mircea Merca, A Special Case of the Generalized Girard-Waring Formula J. Integer Sequences, Vol. 15 (2012), Article 12.5.7. Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016. Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019. FORMULA a(n) = sum(binomial(binomial(n, k), 2), k=0..n); a(n) = binomial(2*n-1, n-1)-2^(n-1) = A088218(n)-A011782(n). E.g.f.: exp(2*x)*(BesselI(0, 2*x)-1)/2. - Vladeta Jovovic, Jul 24 2005 a(n) = (1/2)*sum(i+j>n,0<=i,j<=n,binomial(i+j,i)). - Benoit Cloitre, May 26 2006 Conjecture: n*(n-2)*a(n) +2*(-3*n^2+7*n-3)*a(n-1) +4*(n-1)*(2*n-3) *a(n-2)=0. - R. J. Mathar, Apr 04 2012 a(n) = sum_{0

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 03:48 EST 2023. Contains 360082 sequences. (Running on oeis4.)