This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108946 a(2n) = A001570(n), a(2n+1) = -A007654(n+1). 2
 1, -3, 13, -48, 181, -675, 2521, -9408, 35113, -131043, 489061, -1825200, 6811741, -25421763, 94875313, -354079488, 1321442641, -4931691075, 18405321661, -68689595568, 256353060613, -956722646883, 3570537526921, -13325427460800, 49731172316281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In reference to program code, 2baseiseq[X](n) = ((-1)^n)*A001353(n) (a(n)^2 + 1 is a perfect square.) 1tesseq[X](n) = (-1^(n+1))*A097948(n) LINKS Robert Munafo, Sequences Related to Floretions Index entries for linear recurrences with constant coefficients, signature (-4, 0, 4, 1). FORMULA G.f.: (x^2+x+1)/((1-x)*(x+1)*(x^2+4*x+1)). Floor(((2 + sqrt(3))^n + (2 - sqrt(3))^n)/4) produces this sequence with a different offset and without signs. - James R. Buddenhagen, May 20 2010 Define c(n) = a(n) - 4*a(n+1) - a(n+2) and d(n) = -a(n) - 4*a(n+1) - a(n+2); Conjectures: I: c(2n) = 24*A076139(n); (Triangular numbers that are one-third of another triangular number) II: c(2n+1) = -A011943(n+1); (Numbers n such that any group of n consecutive integers has integral standard deviation) III: d(2n) = -2; IV: d(2n+1) = -1 MAPLE seriestolist(series((x^2+x+1)/((1-x)*(x+1)*(x^2+4*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1ibaseiseq[X] with X = .5'i + .5i' + 'ii' - .5'jj' + 1.5'kk' - 1 PROG (MAGMA) /* By definition: */ m:=15; R:=PowerSeriesRing(Integers(), m); A001570:=Coefficients(R!((1-x)/(1-14*x+x^2))); A007654:=Coefficients(R!(-3*x^2*(1+x)/(-1+x)/(1-14*x+x^2))); &cat[[A001570[i], -A007654[i]]: i in [1..m-2]]; // Bruno Berselli, Feb 05 2013 CROSSREFS Cf. A007654, A001570, A076139. See also A117808, A122571 (same except for signs). Sequence in context: A193164 A122424 A027326 * A048482 A094978 A251743 Adjacent sequences:  A108943 A108944 A108945 * A108947 A108948 A108949 KEYWORD sign,easy AUTHOR Creighton Dement, Jul 21 2005 EXTENSIONS Corrected floretion by Creighton Dement, Dec 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.