login
a(1) = 1; a(n) = sum of previous terms a(k) such that a(k) + n is prime.
0

%I #8 Apr 09 2014 10:15:17

%S 1,1,0,2,2,2,0,0,6,2,14,2,6,0,24,2,62,2,24,0,76,2,74,0,88,0,242,2,396,

%T 2,88,0,164,0,1018,2,532,0,1122,2,1462,2,1638,0,1652,2,2348,0,2808,0,

%U 3950,2,7254,0,9560,0,5720,2,18298,2,4292,0,22068,0,28528,2,8194,0,76236,2

%N a(1) = 1; a(n) = sum of previous terms a(k) such that a(k) + n is prime.

%e Among the first 10 terms, a(3)+11, a(4)+11, a(5)+11, a(6)+11, a(7)+11, a(8)+11, a(9)+11 and a(10)+11 are primes. So a(11) = a(3)+a(4)+a(5)+a(6)+a(7)+a(8)+a(9)+a(10) = 14.

%o (PARI) {m=70;v=[1];for(n=2,m,c=0;for(j=1,length(v),if(isprime(v[j]+n),c=c+v[j])); v=concat(v,c));for(j=1,m,print1(v[j],","))}

%K nonn

%O 1,4

%A _Leroy Quet_, Jul 30 2005

%E More terms and PARI code from _Klaus Brockhaus_, Aug 04 2005