

A108859


Numbers k such that k divides the sum of the digits of k^(2k).


0



1, 3, 5, 9, 18, 63, 72, 74, 104, 111, 116, 117, 565, 621, 734, 1242, 1620, 4596, 4728, 5823, 5956, 21135, 28251, 46530, 46908, 78257, 129619, 277407
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The quotients are 1, 6, 8, 9, 13, 17, 16, 17, 17, 18, 17, 19, 25, 25, 26, 28, 20, 33, 33, 34, 34, 39, 40, 33, 42, 44, 46, 49.


LINKS

Table of n, a(n) for n=1..28.


EXAMPLE

734 is a term because the sum of the digits of 734^(2*734), 19084, is divisible by 734.


MATHEMATICA

Do[If[Mod[Plus @@ IntegerDigits[n^(2*n)], n] == 0, Print[n]], {n, 1, 10000}]


CROSSREFS

Sequence in context: A279634 A028411 A018098 * A032385 A218138 A192230
Adjacent sequences: A108856 A108857 A108858 * A108860 A108861 A108862


KEYWORD

base,hard,more,nonn


AUTHOR

Ryan Propper, Jul 11 2005


EXTENSIONS

a(22)a(28) from Lars Blomberg, Jul 12 2011


STATUS

approved



