|
|
A108859
|
|
Numbers k such that k divides the sum of the digits of k^(2k).
|
|
0
|
|
|
1, 3, 5, 9, 18, 63, 72, 74, 104, 111, 116, 117, 565, 621, 734, 1242, 1620, 4596, 4728, 5823, 5956, 21135, 28251, 46530, 46908, 78257, 129619, 277407
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The quotients are 1, 6, 8, 9, 13, 17, 16, 17, 17, 18, 17, 19, 25, 25, 26, 28, 20, 33, 33, 34, 34, 39, 40, 33, 42, 44, 46, 49.
|
|
LINKS
|
Table of n, a(n) for n=1..28.
|
|
EXAMPLE
|
734 is a term because the sum of the digits of 734^(2*734), 19084, is divisible by 734.
|
|
MATHEMATICA
|
Do[If[Mod[Plus @@ IntegerDigits[n^(2*n)], n] == 0, Print[n]], {n, 1, 10000}]
|
|
CROSSREFS
|
Sequence in context: A279634 A028411 A018098 * A032385 A218138 A192230
Adjacent sequences: A108856 A108857 A108858 * A108860 A108861 A108862
|
|
KEYWORD
|
base,hard,more,nonn
|
|
AUTHOR
|
Ryan Propper, Jul 11 2005
|
|
EXTENSIONS
|
a(22)-a(28) from Lars Blomberg, Jul 12 2011
|
|
STATUS
|
approved
|
|
|
|