|
|
A108852
|
|
Number of Fibonacci numbers <= n.
|
|
17
|
|
|
1, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
|
|
FORMULA
|
G.f.: (Sum_{n>=0} x^Fibonacci(n))/(1-x). - Vladeta Jovovic, Nov 27 2005
a(n) = 1+floor(log_phi((sqrt(5)*n+sqrt(5*n^2+4))/2)), n>=0, where phi is the golden ratio. Alternatively, a(n)=1+floor(arcsinh(sqrt(5)*n/2)/log(phi)). Also a(n)=A072649(n)+2. - Hieronymus Fischer, May 02 2007
a(n) = 1+floor(log_phi(sqrt(5)*n+1)), n>=0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
|
|
MATHEMATICA
|
fibPi[n_] := 1 + Floor[ Log[ GoldenRatio, 1 + n*Sqrt@ 5]]; Array[fibPi, 80, 0] (* Robert G. Wilson v, Aug 03 2014 *)
|
|
PROG
|
(Haskell) fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
fibs_to :: Integer -> Integer
fibs_to n = length $ takeWhile (<= n) fibs
|
|
CROSSREFS
|
Cf. A060384, A072649.
Sequence in context: A098200 A092405 A130234 * A179413 A119476 A358700
Adjacent sequences: A108849 A108850 A108851 * A108853 A108854 A108855
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michael C. Vanier (mvanier(AT)cs.caltech.edu), Nov 27 2005
|
|
STATUS
|
approved
|
|
|
|