login
A108745
Decimal expansion of C = 1/(1+2/(1+3/(1+5/(1+6/(1+8/(1+9/(1+11/(1+. .)))))))).
2
5, 0, 7, 8, 2, 9, 7, 3, 2, 4, 8, 8, 6, 8, 4, 3, 2, 7, 8, 9, 4, 0, 8, 5, 3, 0, 8, 7, 8, 9, 6, 8, 7, 1, 2, 5, 8, 3, 5, 2, 8, 6, 6, 5, 7, 1, 6, 4, 3, 3, 2, 9, 5, 8, 3, 3, 7, 7, 7, 0, 8, 6, 6, 3, 0, 1, 7, 9, 2, 8, 4, 0, 4, 8, 9, 2, 3, 5, 2, 5, 3, 7, 6, 7, 0, 6, 6, 5, 3, 7, 2, 2, 0, 0, 0, 6, 9, 4, 0, 2, 8, 4, 2, 5
OFFSET
0,1
FORMULA
A = B + C with A = Gamma(1/3)*(e/9)^(1/3) and B = Sum_{ = n > 0 } 1/A007559(n).
C = Gamma(1/3, 1/3)*(e/9)^(1/3). - Vladeta Jovovic, Jun 26 2005
EXAMPLE
0.50782973248...
MATHEMATICA
E^(1/3)*ExpIntegralE[2/3, 1/3]/3 // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Feb 22 2013 *)
PROG
(PARI) {C=1; oo=10^5; sum(k=1, oo, C=1./(1+(3*(oo-k+1)-1)/(1+3*(oo-k+1)*C))); return(C)} /* Paul D. Hanna */
CROSSREFS
Sequence in context: A200400 A190147 A346190 * A114124 A155827 A244045
KEYWORD
nonn,cons
AUTHOR
Philippe Deléham, Jun 22 2005
EXTENSIONS
More terms from Paul D. Hanna, Jun 25 2005
STATUS
approved