login
A108707
Minimum side in Pythagorean triangles with hypotenuse of n.
2
0, 0, 0, 0, 3, 0, 0, 0, 0, 6, 0, 0, 5, 0, 9, 0, 8, 0, 0, 12, 0, 0, 0, 0, 7, 10, 0, 0, 20, 18, 0, 0, 0, 16, 21, 0, 12, 0, 15, 24, 9, 0, 0, 0, 27, 0, 0, 0, 0, 14, 24, 20, 28, 0, 33, 0, 0, 40, 0, 36, 11, 0, 0, 0, 16, 0, 0, 32, 0, 42, 0, 0, 48, 24, 21, 0, 0, 30, 0, 48, 0, 18, 0, 0, 13, 0, 60, 0, 39, 54
OFFSET
1,5
LINKS
EXAMPLE
a(5) = 3 as the right triangle with sides (3, 4, 5) has hypotenuse n = 5 smallest side a(5) = 3. This is the smallest side a right triangle with integer sides and hypotenuse 5 can have. - David A. Corneth, Apr 10 2021
MATHEMATICA
f[n_]:=Block[{k=n-1, m=Sqrt[n/2], a}, While[k>m&&!IntegerQ[(a=Sqrt[n^2-k^2])], k--]; If[k<=m, 0, a]]; Table[f[n], {n, 90}]
PROG
(PARI) first(n) = {my(lh = List(), res = vector(n, i, oo)); for(u = 2, sqrtint(n), for(v = 1, u, if (u^2+v^2 > n, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, n, if (i*(u^2+v^2) > n, break); listput(lh, i*(u^2+v^2)); res[i*(u^2+v^2)] = vecmin([res[i*(u^2+v^2)], i*(u^2 - v^2), i*2*u*v]))))); for(i = 1, n, if(res[i] == oo, res[i] = 0)); res } \\ David A. Corneth, Apr 10 2021, adapted from A009000
CROSSREFS
A046080 gives the number of Pythagorean triangles with hypotenuse n.
Sequence in context: A321432 A220093 A097017 * A046775 A221787 A348070
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by Ray Chandler, Dec 20 2011
STATUS
approved