login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108674 a(n) = (n+1)^2 * (n+2)^2 * (2*n+3) / 12. 3
1, 15, 84, 300, 825, 1911, 3920, 7344, 12825, 21175, 33396, 50700, 74529, 106575, 148800, 203456, 273105, 360639, 469300, 602700, 764841, 960135, 1193424, 1470000, 1795625, 2176551, 2619540, 3131884, 3721425, 4396575, 5166336, 6040320, 7028769, 8142575 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Kekulé numbers for certain benzenoids.

This is the case P(3,n) of the family of sequences defined in A132458. - Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007

Using the triangular numbers 0, 1, 3, ..., create a sequence of advancing sums of k-tuples with k=n*(n+1)/2 of the odd numbers: 0, 1, 15, 84, 300, 825, 1911, 3920, ... . This begins 0, then 1, then 3+5+7=15, then 9+11+13+15+17+19=84, then 21+23+...+39=300 and so on. - J. M. Bergot, Dec 08 2014

Partial sums of A008354. - J. M. Bergot, Dec 19 2014

Coefficients in the terminating series identity 1 - 15*n/(n + 4) + 84*n*(n - 1)/((n + 4)*(n + 5)) - 300*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 2,3,4,.... Cf. A000330. - Peter Bala, Feb 12 2019

REFERENCES

S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 231, # 33).

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

G.f.: (1+z)*(1+8*z+z^2)/(1-z)^6.

Also a(n) = Sum[Sum[i*j^2, {i, 1, n+1}], {j, 1, n+1}]. - Alexander Adamchuk, Jun 25 2006

MAPLE

a:=n->(n+1)^2*(n+2)^2*(2*n+3)/12; seq(a(n), n=0..35);

a:=n->sum(k^2*sum(k, k=0..n+1), k=0..n+1): seq(a(n), n=0...35); # Zerinvary Lajos, Aug 01 2008

MATHEMATICA

Table[(n^2+4*n^3+5*n^4+2*n^5)/12, {n, 40}] (* Enrique Pérez Herrero, Feb 27 2013 *)

PROG

(PARI) a(n)=(n+1)^2*(n+2)^2*(2*n+3)/12 \\ Charles R Greathouse IV, Feb 27 2013

(GAP) List([0..40], k->(k+1)^2*(k+2)^2*(2*k+3)/12); # Muniru A Asiru, Feb 18 2019

CROSSREFS

Cf. A000537, A126274.

Cf. A000330, A008354.

Sequence in context: A270768 A252935 A247958 * A050405 A241220 A279740

Adjacent sequences:  A108671 A108672 A108673 * A108675 A108676 A108677

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Jun 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 03:14 EST 2019. Contains 330013 sequences. (Running on oeis4.)