login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108578 Number of 3 X 3 magic squares with magic sum 3n. 7
0, 0, 0, 0, 8, 24, 32, 56, 80, 104, 136, 176, 208, 256, 304, 352, 408, 472, 528, 600, 672, 744, 824, 912, 992, 1088, 1184, 1280, 1384, 1496, 1600, 1720, 1840, 1960, 2088, 2224, 2352, 2496, 2640, 2784, 2936, 3096, 3248, 3416, 3584, 3752, 3928, 4112, 4288 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Contribution from Thomas Zaslavsky, Mar 12 2010: (Start)

A magic square has distinct positive integers in its cells, whose sum is the same (the "magic sum") along any row, column, or main diagonal.

a(n) is given by a quasipolynomial of period 6. (End)

LINKS

T. Zaslavsky, Table of n, a(n) for n = 1..10000.

M. Beck and T. Zaslavsky, An enumerative geometry for magic and magilatin labellings, Ann. Combinatorics, 10 (2006), no. 4, 395-413. MR 2007m:05010. Zbl 1116.05071. - Thomas Zaslavsky, Jan 29 2010

Matthias Beck and Thomas Zaslavsky, Six Little Squares and How their Numbers Grow, Journal of Integer Sequences, 13 (2010), Article 10.6.2.Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1, -1,1).

FORMULA

G.f.: [8*x^5*(1+2*x)] / [(1-x)*(1-x^2)*(1-x^3)].

a(n) =  a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - Vincenzo Librandi, Sep 01 2018

EXAMPLE

a(5) = 8 because there are 8 3 X 3 magic squares with entries 1,...,9 and magic sum 15.

MATHEMATICA

LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 0, 0, 8, 24}, 50] (* Jean-Fran├žois Alcover, Sep 01 2018 *)

CoefficientList[Series[8 x^4 (1 + 2 x) / ((1 - x) (1 - x^2) (1 - x^3)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 01 2018 *)

PROG

(PARI) a(n)=(1/9)*(2*n^2-32*n+[144, 78, 120, 126, 96, 102][(n%18)/3+1])

(PARI) x='x+O('x^99); concat(vector(4), Vec(8*x^5*(1+2*x)/((1-x)*(1-x^2)*(1-x^3)))) \\ Altug Alkan, Sep 01 2018

(MAGMA) I:=[0, 0, 0, 0, 8, 24]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..60]]; // Vincenzo Librandi, Sep 01 2018

CROSSREFS

Equals 8 times the second differences of A055328.

Cf. A108576, A108577, A108579.

Sequence in context: A283078 A319528 A140403 * A305241 A044450 A134223

Adjacent sequences:  A108575 A108576 A108577 * A108579 A108580 A108581

KEYWORD

nonn

AUTHOR

Thomas Zaslavsky and Ralf Stephan, Jun 11 2005

EXTENSIONS

Edited by N. J. A. Sloane, Feb 05 2010

Corrected g.f. to account for previous change in parameter n from magic sum s to s/3; by Thomas Zaslavsky, Mar 12 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 04:00 EST 2018. Contains 317225 sequences. (Running on oeis4.)