This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108572 Number of partitions of n which, as multisets, are nontrivial repetitions of a multiset. 1
 0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 0, 37, 0, 44, 16, 56, 0, 93, 6, 101, 29, 137, 0, 217, 0, 230, 57, 297, 20, 450, 0, 490, 102, 643, 0, 918, 0, 1004, 202, 1255, 0, 1783, 14, 1992, 298, 2438, 0, 3364, 61, 3734, 491, 4565, 0, 6251, 0, 6842, 818 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS The singleton and the all-ones partitions are ignored, so that a(n)=0 if n is prime. If a partition is listed as m_1^am_2^bm_3^c..., then it is counted exactly when gcd(a,b,c,...)>1. These are equinumerous (conjugate) with those partitions for which gcd(m_1,m_2,...)>1 (less 1, the singleton), hence the formula. LINKS FORMULA a(n) = A018783(n)-1, n>1. - Vladeta Jovovic, Jul 28 2005 EXAMPLE a(25) = 6: 1^(15)2^5 = 5{1, 1, 1, 2}, 1^52^(10) = 5{1, 2, 2}, 1^(10)3^5 = 5{3, 1, 1}, 2^53^5 = 5{3, 2}, 1^44^4 = 5{4, 1}, 5^5 = 5{5}. Note that A000041(25)=P(25)=1958, only 6 of which satisfy the criterion. MAPLE with(combinat):PartMulti:=proc(n::nonnegint) local count, a, i, j, b, m, k, part_vec; bigcount:=0; if isprime(n) then return(bigcount) else ps:=partition(n); b:=nops(ps); for m from 2 to b-1 do p:=ps[m]; a:=nops(p); part_vec:=array(1..n); for k from 1 to n do part_vec[k]:=0 od; for i from 1 to a do j:=p[i]; part_vec[j]:=part_vec[j]+1 od; g:=0; for j from 1 to n do g:=igcd(g, part_vec[j]) od; if g>1 then bigcount:=bigcount+1 fi od; return(bigcount) end if end proc; seq(PartMulti(q), q=1..49); MATHEMATICA Table[Length[Select[IntegerPartitions[n], And[Length[#]1]&]], {n, 20}] (* Gus Wiseman, Dec 06 2018 *) CROSSREFS Cf. A000837, A018783, A047966, A100953, A303386, A303547, A303553, A319149, A319162, A319164, A319810. Sequence in context: A152770 A098601 A113486 * A322335 A245907 A104686 Adjacent sequences:  A108569 A108570 A108571 * A108573 A108574 A108575 KEYWORD nonn AUTHOR Len Smiley, Jul 25 2005 EXTENSIONS More terms from Gus Wiseman, Dec 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 17:48 EDT 2019. Contains 323395 sequences. (Running on oeis4.)