OFFSET
0,2
COMMENTS
Row sums of A108477. In general, Sum_{k=0..n} Sum_{j=0..n} binomial(2(n-k), j)*binomial(2k, j)*r^j has expansion (1-(r+1)*x)/((1 + (r+3)*x + (r-1)*(r+3)*x^2 + (r-1)^3*x^3).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,5,-1).
FORMULA
G.f.: (1-3*x)/((1+x)*(1-6*x+x^2)).
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3).
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(2(n-k), j)*binomial(2*k, j)2^j.
a(n) + a(n+1) = A001541(n+1). - R. J. Mathar, Jul 13 2009
a(n) = (4*(-1)^n - (3-2*sqrt(2))^n*(-2+sqrt(2)) + (2+sqrt(2))*(3+2*sqrt(2))^n)/8. - Colin Barker, Nov 04 2016
a(n) = (-1)^n * Re(sqrt(1+i) * cos((n + 1/2) * arccos(i)) * sin(n * arccos(i)) + 1), where i = sqrt(-1). - Daniel Suteu, Jun 23 2018
MATHEMATICA
CoefficientList[Series[(1-3x)/(1-5x-5x^2+x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{5, 5, -1}, {1, 2, 15}, 30] (* Harvey P. Dale, Dec 30 2019 *)
PROG
(PARI) Vec((1-3*x)/((1+x)*(1-6*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 04 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 04 2005
STATUS
approved