This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108475 Expansion of (1-3*x) / (1-5*x-5*x^2+x^3). 4
 1, 2, 15, 84, 493, 2870, 16731, 97512, 568345, 3312554, 19306983, 112529340, 655869061, 3822685022, 22280241075, 129858761424, 756872327473, 4411375203410, 25711378892991, 149856898154532, 873430010034205, 5090723162050694, 29670908962269963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of A108477. In general, sum{k=0..n, sum{j=0..n, C(2(n-k),j)C(2k,j)r^j}} has expansion (1-(r+1)x)/((1+(r+3)x+(r-1)(r+3)x^2+(r-1)^3*x^3). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,5,-1). FORMULA G.f.: (1-3*x)/((1+x)*(1-6*x+x^2)). a(n) = 5*a(n-1)+5*a(n-2)-a(n-3). a(n) = sum{k=0..n, sum{j=0..n, C(2(n-k), j)C(2*k, j)2^j}}. Conjecture: a(n)=A000129(n+1)*A001333(n). - R. J. Mathar, Jul 08 2009 a(n)+a(n+1) = A001541(n+1). - R. J. Mathar, Jul 13 2009 a(n) = (4*(-1)^n-(3-2*sqrt(2))^n*(-2+sqrt(2))+(2+sqrt(2))*(3+2*sqrt(2))^n)/8. - Colin Barker, Nov 04 2016 PROG (PARI) Vec((1-3*x)/((1+x)*(1-6*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 04 2016 CROSSREFS Sequence in context: A057152 A002740 A178750 * A098624 A116079 A153445 Adjacent sequences:  A108472 A108473 A108474 * A108476 A108477 A108478 KEYWORD easy,nonn AUTHOR Paul Barry, Jun 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.