%I #3 Mar 30 2012 17:37:15
%S 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,
%T 1,1,1,1,2,1,3,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,3,1,3,1,2,1,1,1,1,
%U 1,1,2,1,1,2,1,1,1,1,1,1,3,1,3,1,4,1,3,1,3,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1
%N Table read by antidiagonals: T(n,k) (n>=2) = number of factorizations of (n,k) into pairs (i,j) with i,j>1.
%C (a,b)*(x,y)=(a*x,b*y).
%F Dirichlet g.f.: A(s, t) = exp(B(s, t)/1 + B(2*s, 2*t)/2 + B(3*s, 3*t)/3 + ...) where B(s, t) = (zeta(s)-1)*(zeta(t)-1).
%e 1 1 1 1 1 ...
%e 1 1 1 1 1 ...
%e 1 1 2 1 2 ...
%e 1 1 1 1 1 ...
%e 1 1 2 1 3 ...
%e (8,6)=(4,3)*(2,2)=(4,2)*(2,3), so a(8,6)=3.
%Y Cf. A108461. Columns 4, 6: A038548 (n>1), A032741. Main diagonal: A108466.
%K nonn,tabl
%O 2,13
%A _Christian G. Bower_, Jun 03 2005