login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108410 Triangle T(n,k) read by rows: number of 12312-avoiding matchings on [2n] with exactly k crossings (n >= 1, 0 <= k <= n-1). 3
1, 2, 1, 5, 5, 2, 14, 21, 15, 5, 42, 84, 84, 49, 14, 132, 330, 420, 336, 168, 42, 429, 1287, 1980, 1980, 1350, 594, 132, 1430, 5005, 9009, 10725, 9075, 5445, 2145, 429, 4862, 19448, 40040, 55055, 55055, 40898, 22022, 7865, 1430, 16796, 75582 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

W. Y. C. Chen, T. Mansour and S. H. F. Yan, Matchings avoiding partial patterns, The Electronic Journal of Combinatorics 13, 2006, #R112, Theorem 2.2.

D. S. Hough, Descents in noncrossing trees, Electronic J. Combinatorics 10 (2003), #N13, Theorem 2.2 [From Ira M. Gessel, May 10 2010]

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275

W. Y. C. Chen, T. Mansour and S. H. F. Yan, Matchings avoiding partial patterns

FORMULA

T(n, k) = Sum_{i=n..2n-1} (-1)^(n+k+i)/i*C(i, n)*C(3n, i+1+n)*C(i-n, k).

T(n,k) = C(n-1+k,n-1)C(2n-k,n+1)/n (0 <= k <= n-1). [Chen et al.] - Emeric Deutsch, Dec 19 2006

O.g.f. equals the series reversion w.r.t. x of x*(1+x*(1-t))/(1+x)^3. If R(n,t) is the n-th row polynomial of this triangle then R(n 1+t) is the n-th row polynomial of A089434. - Peter Bala, Jul 15 2012

EXAMPLE

Triangle begins

   1;

   2,     1;

   5,     5,     2;

  14,    21,    15,     5;

  42,    84,    84,    49,    14;

132,   330,   420,   336,   168,    42;

429,  1287,  1980,  1980,  1350,   594,   132;

1430,  5005,  9009, 10725,  9075,  5445,  2145,  429;

4862, 19448, 40040, 55055, 55055, 40898, 22022, 7865, 1430;

MAPLE

T:=(n, k)->binomial(n-1+k, n-1)*binomial(2*n-k, n+1)/n: for n from 1 to 10 do seq(T(n, k), k=0..n-1) od; # yields sequence in triangular form - Emeric Deutsch, Dec 19 2006

MATHEMATICA

T[n_, k_] := Binomial[n + k - 1, n - 1]*Binomial[2*n - k, n + 1]/n;

Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-Fran├žois Alcover, Nov 11 2017, after Emeric Deutsch *)

PROG

(PARI) T(n, k) = binomial(n-1+k, n-1)*binomial(2*n-k, n+1)/n; \\ Andrew Howroyd, Nov 06 2017

CROSSREFS

Left-hand columns include A000108 and A002054. Right-hand columns include A000108 and A007851+1. Row sums are A001764. A089434.

Sequence in context: A046757 A248905 A118244 * A058116 A058118 A124226

Adjacent sequences:  A108407 A108408 A108409 * A108411 A108412 A108413

KEYWORD

nonn,tabl

AUTHOR

Ralf Stephan, Jun 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 17:10 EDT 2018. Contains 316427 sequences. (Running on oeis4.)