Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Sep 22 2017 10:01:30
%S 1,4,21,124,761,4724,29421,183404,1143601,7131364,44471301,277325404,
%T 1729418921,10784771924,67254567261,419404046924,2615432135521,
%U 16310012568004,101710347053301,634272638178364,3955367287840601
%N Expansion of (1-4x)/(1-8x+11x^2).
%C Binomial transform of A098648. Second binomial transform of A001077. Third binomial transform of A084057. 4th binomial transform of (1, 0, 5, 0, 25, 0, 125, 0, 625, 0, 3125, ...).
%H Seiichi Manyama, <a href="/A108404/b108404.txt">Table of n, a(n) for n = 0..1258</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-11).
%F E.g.f.: exp(4x)cosh(sqrt(5)x).
%F a(n) = 8a(n-1) - 11a(n-2), a(0) = 1, a(1) = 4.
%F a(n) = ((4+sqrt(5))^n + (4-sqrt(5))^n)/2.
%F a(n+1)/a(n) converges to 4 + sqrt(5) = 6.2360679774997896964... = 4+A002163.
%F a(n) = A091870(n+1)-4*A091870(n). - _R. J. Mathar_, Nov 10 2013
%t CoefficientList[Series[(1-4x)/(1-8x+11x^2),{x,0,30}],x] (* or *) LinearRecurrence[{8,-11},{1,4},30] (* _Harvey P. Dale_, Jan 03 2012 *)
%Y Cf. A001077, A084057, A098648.
%K easy,nonn
%O 0,2
%A _Philippe Deléham_, Jul 04 2005