%I #14 Mar 15 2024 14:24:38
%S 1,-1,3,3,1,17,17,-1,67,67,1,289,289,-1,1219,1219,1,5169,5169,-1,
%T 21891,21891,1,92737,92737,-1,392835,392835,1,1664081,1664081,-1,
%U 7049155,7049155,1,29860705,29860705,-1,126491971,126491971,1,535828593,535828593,-1,2269806339,2269806339,1,9615053953
%N Expansion of (1 - x + 3*x^2 + 4*x^4 + 8*x^5 + 3*x^6 + x^7 + x^8) / ((1 + x)*(1 - x + x^2)*(1 - x - x^2)*(1 + x + 2*x^2 - x^3 + x^4)).
%C Floretion Algebra Multiplication Program, FAMP Code: (a_n) = 2kbaseforcycfizseq[ + .5'i + .5'j + .5'k + .5e], A000004 = 1vesforcycfizseq, FizType = ('i, 'j, 'k)
%H Colin Barker, <a href="/A108391/b108391.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,5,0,0,1).
%F a(n) = 3*a(n-3) + 5*a(n-6) + a(n-9) for n>4. - _Colin Barker_, May 11 2019
%o (PARI) Vec((1-x+3*x^2+4*x^4+8*x^5+3*x^6+x^7+x^8)/((x+1)*(x-1-x^2)*(x^2+x-1)*(x^4-x^3+2*x^2+x+1))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012
%Y Cf. A108390, A108391.
%K sign,easy
%O 0,3
%A _Creighton Dement_, Jun 01 2005