login
Expansion of (-1-x-x^2-4*x^3-4*x^4+4*x^5+x^6+x^7+x^8) / ((x+1)*(x^2-x+1)*(x^2+x-1)*(x^4-x^3+2*x^2+x+1)).
2

%I #17 Mar 15 2024 14:24:21

%S 1,1,1,7,7,-1,25,25,1,111,111,-1,465,465,1,1975,1975,-1,8361,8361,1,

%T 35423,35423,-1,150049,150049,1,635623,635623,-1,2692537,2692537,1,

%U 11405775,11405775,-1,48315633,48315633,1,204668311,204668311,-1,866988873,866988873,1,3672623807,3672623807,-1

%N Expansion of (-1-x-x^2-4*x^3-4*x^4+4*x^5+x^6+x^7+x^8) / ((x+1)*(x^2-x+1)*(x^2+x-1)*(x^4-x^3+2*x^2+x+1)).

%C Floretion Algebra Multiplication Program, FAMP Code: (a_n) = 2ibaseforcycfizseq[ + .5'i + .5'j + .5'k + .5e], A000004 = 1vesforcycfizseq, FizType = ('i, 'j, 'k)

%H Colin Barker, <a href="/A108390/b108390.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,3,0,0,5,0,0,1).

%F a(n) = 3*a(n-3) + 5*a(n-6) + a(n-9) for n>8. - _Colin Barker_, May 12 2019

%t CoefficientList[Series[(-1-x-x^2-4x^3-4x^4+4x^5+x^6+x^7+x^8)/ ((x+1) (x^2-x+1)(x^2+x-1)(x^4-x^3+2x^2+x+1)),{x,0,50}],x] (* _Harvey P. Dale_, Sep 15 2011 *)

%o (PARI) Vec((-1-x-x^2-4*x^3-4*x^4+4*x^5+x^6+x^7+x^8)/((x+1)*(x^2-x+1)*(x^2+x-1)*(x^4-x^3+2*x^2+x+1))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012

%Y Cf. A108391.

%K sign,easy

%O 0,4

%A _Creighton Dement_, Jun 01 2005