login
Integers k such that 10^k - 33 is prime.
0

%I #29 Jan 25 2022 08:36:44

%S 2,3,4,10,18,46,48,121,154,158,170,196,211,250,294,316,320,663,975,

%T 1165,1351,4126,4270,5724,7156,15025,19132,25035,36174,77418

%N Integers k such that 10^k - 33 is prime.

%C See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "99967".

%C The next term, if one exists, is > 100000. - _Robert Price_, Apr 25 2011

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/">List of near-repdigit-related prime numbers</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%e k=2 is a term because 10^2 - 33 = 67 (prime).

%e k=48 is a term because 10^48 - 33 = 999999999999999999999999999999999999999999999967 (prime).

%t For[n = 1, n < 1000, n++, If[PrimeQ[10^n - 33], Print[n]]] (Steinerberger)

%Y Cf. A108330, A108328.

%K nonn,more

%O 1,1

%A _Parthasarathy Nambi_, Jul 01 2005

%E a(8)-a(21) from _Stefan Steinerberger_, Jan 28 2006

%E a(22)-a(29) extracted from Makoto Kamada website by _Robert Price_, Dec 06 2010

%E Edited by _Ray Chandler_, Dec 23 2010

%E a(30) from _Robert Price_, Apr 25 2011