%I #8 Jun 03 2023 14:22:08
%S 114,1368,1152,232,3336,1872,1206,228,1780,1318,700,1038,3534,6652,
%T 192,1948,9624,850,1980,5022,4218,5658,3556,3936,7936,240,660,11838,
%U 14136,438,3934,1228,18160,2178,762,6048,10060,7438,13062,13306,2154,3454,10950,6808,354
%N Least positive k such that k * Z^n + 1 is prime, where Z = 10^100+267, the first prime greater than a googol.
%C Other terms are a(30)=438 and a(45)=354. All values have been proved prime. Primality proof for a(45): PFGW Version 1.2.0 for Windows [FFT v23.8] Primality testing 354*(10^100+267)^45+1 [N-1, Brillhart-Lehmer-Selfridge] Reading factors from helper file help.txt Running N-1 test using base 3 Calling Brillhart-Lehmer-Selfridge with factored part 99.94% 354*(10^100+267)^45+1 is prime! (2.5654s+0.0037s) - _N. J. A. Sloane_, Jul 19 2005
%C In the b-file, all terms up to index 100 have been verified with the n-1 test. - _Lucas A. Brown_, Jun 02 2023
%H Lucas A. Brown, <a href="/A108344/b108344.txt">Table of n, a(n) for n = 1..100</a>
%H Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A108344.py">Python program</a>.
%K nonn
%O 1,1
%A _Jason Earls_, Jul 01 2005
%E a(17)-a(100) from _Lucas A. Brown_, Jun 02 2023