login
A108315
Composite numbers n such that a^v + b^v + c^v + ... is prime, where a*b*c* ... is the prime factorization of n and v is the number of primes dividing n (counted with repetition).
0
6, 10, 12, 14, 26, 28, 34, 40, 45, 52, 63, 74, 75, 80, 94, 96, 117, 126, 134, 146, 152, 153, 165, 175, 194, 206, 245, 261, 268, 274, 296, 320, 325, 326, 333, 334, 363, 376, 384, 386, 387, 399, 466, 468, 475, 477, 486, 490, 500, 504, 507, 522, 531, 536, 539, 550
OFFSET
1,1
COMMENTS
5166592 generates a 41 digit prime. Some consecutive terms are (74,75) (152,153) (325,326) ... Conjecture: there are infinitely many consecutive values.
EXAMPLE
a(5)=26 because 26=2*13 and 2^2 + 13^2 = 173, a prime.
MATHEMATICA
pfnvQ[n_]:=Module[{fi=Flatten[Table[#[[1]], #[[2]]]&/@FactorInteger[n]]}, CompositeQ[n]&&PrimeQ[Total[fi^PrimeOmega[n]]]]; Select[Range[600], pfnvQ] (* Harvey P. Dale, Jul 21 2018 *)
CROSSREFS
Sequence in context: A325231 A134620 A355791 * A134616 A362180 A081390
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 30 2005
STATUS
approved