login
A108282
a(n) = k*a(n-1) + a(n-2) where k = A003842(a); a(0) = 1.
0
1, 2, 3, 5, 13, 18, 49, 67, 116, 299, 415, 714, 1843, 2557, 6957, 9514, 16471, 42456, 58927, 160310, 219237, 379547, 978331, 1357878, 2336209, 6030296, 8366505, 22763306, 31129811, 53893117, 138916045, 192809162, 331725207, 856259576
OFFSET
0,2
COMMENTS
Aperiodic recursive rabbit sequence.
The recursive Fibonacci-like multiplier k is derived from the rabbit sequence (1 0 1 1 0 1 0 1...) in which the 0's are replaced by 2's, getting the rabbit sequence of A003842: (1 2 1 1 2 1 2 1...).
EXAMPLE
a(6) = 49 = 2*18 + 13; where 2 = A003842(6)
CROSSREFS
Cf. A003842.
Sequence in context: A112596 A179238 A041385 * A042047 A273939 A087763
KEYWORD
nonn
AUTHOR
Gary W. Adamson, May 30 2005
EXTENSIONS
Corrected and extended by T. D. Noe, Nov 02 2006
STATUS
approved