This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108278 Numbers n such that n^2-1 and n^2+1 are semiprimes. 3

%I

%S 12,30,42,60,102,108,198,312,462,522,600,810,828,1020,1050,1062,1278,

%T 1452,1488,1872,1950,2028,2130,2142,2340,2790,2802,2970,3000,3120,

%U 3252,3300,3330,3672,3930,4020,4092,4230,4548,4800,5280,5640,5652,5658,6198

%N Numbers n such that n^2-1 and n^2+1 are semiprimes.

%C Subsequence of A069062. - _Michel Marcus_, Jan 22 2016

%C Subsequence of A014574. - _Robert Israel_, Jan 24 2016

%H Robert Israel, <a href="/A108278/b108278.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1)=12 because 12^2-1=143=11*13 and 12^2+1=145=5*29 are both semiprimes.

%p filter:= n -> isprime(n+1) and isprime(n-1) and numtheory:-bigomega(n^2+1)=2:

%p select(filter, [seq(i,i=2..1000, 2)]); # _Robert Israel_, Jan 24 2016

%t Select[Range[7000], PrimeOmega[#^2 - 1] == PrimeOmega[#^2 + 1]== 2 &] (* _Vincenzo Librandi_, Jan 22 2016 *)

%o (MAGMA) IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..7000] | IsSemiprime(n^2+1) and IsSemiprime(n^2-1) ]; // _Vincenzo Librandi_, Jan 22 2016

%o (PARI) isok(n) = (bigomega(n^2-1) == 2) && (bigomega(n^2+1) == 2); \\ _Michel Marcus_, Jan 22 2016

%Y Cf. A001358 (semiprimes), A069062 (n^2-1 and n^2+1 have the same number of divisors), A014574 (average of twin prime pairs).

%K nonn

%O 1,1

%A _Hugo Pfoertner_, May 30 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.