login
A108219
Numbers n such that A001414(n) is a golden semiprime, where A001414 is the sum of primes dividing n (with repetition).
1
8, 9, 26, 44, 105, 112, 125, 126, 150, 160, 180, 192, 216, 243, 292, 568, 639, 1174, 1407, 1448, 1629, 1675, 2010, 2144, 2379, 2412, 2685, 2722, 2864, 3222, 3355, 3835, 3999, 4026, 4107, 4543, 4602, 5035, 5709, 5978, 6042, 6235, 6307, 6355, 6490, 7482
OFFSET
1,1
COMMENTS
Numbers n such that A001414(n) and A001414(n+1) are both golden semiprimes: 8, 125, 153759, 247455, 678807, 1243499, 1243500, ... Notice that the last two terms indicate a triple. Conjecture: this subsequence is infinite.
LINKS
EXAMPLE
5709 = 3*11*173 is in the sequence because 3+11+173 = 187 = 11*17 and 11*phi-17 = 0.79837... < 1.
MATHEMATICA
goldQ[n_] := Module[{f = FactorInteger[n]}, If[Length[f] != 2, False, If[Max[f[[;; , 2]]] != 1, False, Abs[f[[2, 1]] - f[[1, 1]] * GoldenRatio] < 1]]]; sumPrimes[n_] := Plus @@ Times @@@ FactorInteger[n]; Select[Range[7500], goldQ[sumPrimes[#]] &] (* Amiram Eldar, Nov 29 2019 *)
CROSSREFS
Sequence in context: A305828 A322652 A041134 * A041317 A305336 A042311
KEYWORD
nonn
AUTHOR
Jason Earls, Jun 16 2005
STATUS
approved