login
A108212
a(n) = floor(p(n+3)), where p(n) = n*Sum_{i=0..5} i!/(log(n) - 1)^(i+1).
1
399404041, 156868, 13421, 3518, 1478, 800, 505, 353, 265, 209, 172, 146, 127, 113, 102, 93, 86, 80, 76, 72, 68, 65, 63, 61, 59, 57, 56, 55, 54, 53, 52, 51, 50, 50, 49, 49, 49, 48, 48, 48, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47
OFFSET
0,1
LINKS
FORMULA
a(n) = floor(p(n+3)), where p(n) = n*Sum_{i=0..5} i!/(log(n) - 1)^(i+1).
MATHEMATICA
p[n_]= n*Sum[i!/(Log[n]-1)^(i+1), {i, 0, 5}];
Table[Floor[p[n+3]], {n, 0, 70}]
PROG
(Magma)
p:= func< n | n*(&+[Factorial(j)/(Log(n)-1)^(j+1): j in [0..5]]) >;
A108212:= func< n | Floor(p(n+3)) >;
[A108212(n): n in [0..70]]; // G. C. Greubel, Dec 19 2022
(SageMath)
def p(n): return n*sum(factorial(j)/(log(n)-1)^(j+1) for j in range(6))
def A108212(n): return floor(p(n+3))
[A108212(n) for n in range(71)] # G. C. Greubel, Dec 19 2022
CROSSREFS
Sequence in context: A321138 A103773 A172602 * A103124 A259224 A038132
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, Jun 15 2005
EXTENSIONS
Edited by G. C. Greubel, Dec 19 2022
STATUS
approved