login
A108210
Let M[n] be the 2 X 2 matrix {{0, -3}, {(n - 1), 5*(n - 1)}} and let v[1] = {0, 1}', v[n] = M[n]*v[n - 1]'. Then a[n] is the first entry of v[n].
0
0, 3, 15, 132, 1845, 35316, 855225, 25021062, 857777445, 33710592312, 1493816663025, 73679515381890, 4003077396124125, 237532181213699460, 15283471760441624025, 1059866671619938304430, 78802244142275499751125
OFFSET
1,2
COMMENTS
Derangement-type quadratic Markov chain.
MATHEMATICA
M[n_] := {{0, -3}, {(n - 1), 5*(n - 1)}} v[1] = {0, 1} v[n_] := v[n] = M[n].v[n - 1] a = Table[Abs[v[n][[1]]], {n, 1, 25}]
CROSSREFS
Cf. A000166.
Sequence in context: A222390 A281186 A349590 * A006717 A222263 A246804
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 15 2005
EXTENSIONS
Edited by N. J. A. Sloane, Mar 29 2007. The prime indicates transposition. Possible M should be transposed too, the Mathematica code is not clear to me.
STATUS
approved